

Object Model

Reference Guide
Release 2015

Disclaimer

This document is provided “as-is”. Information and views expressed in this document, including URL

and other Internet Web site references, may change without notice. You bear the risk of using it.

Some examples are for illustration only and are fictitious. No real association is intended or inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes only.

Sample Code Warranty disclaimer

Microsoft Corporation disclaims any warranty regarding the sample code contained in this

documentation, including the warranties of merchantability and fitness for a particular purpose.

License agreement
Use of this software is covered by a license agreement provided with it. If you have any questions,

please call the Customer Assistance Department at 800-456-0025 (in the United States or Canada) or

+1-701-281-6500.

Copyright

© 2014 Microsoft Corporation. All rights reserved.

Publication Date

September 2014

 Contents iii

Contents

Introduction 1

Who Should Use this Information... 1
What Programmers Should Know .. 1

Reference 3

Button Control (SIVControl Object) ... 3
Cancel Method .. 5
Controls Collection (SIVApplication Object) ... 6
Constants .. 7
ControlType Property (SIVProperty Object) .. 9
Count Property ... 11
Delete Method ... 12
DisableObjectModel Statement (Microsoft SL SDK Applications) ... 14
Dispose Method .. 15
DSLDate Control (SIVControl Object) ... 16
EventLog Property ... 18
DisableObjectModel Statement (Microsoft SL SDK Applications) ... 20
ExposeCustomObject Statement (Microsoft SL SDK Applications) .. 21
First Method .. 22
GetBusinessDate Method... 25
GetCurrencyIDs Method.. 27
GetCurrencyView Method ... 28
GetCustomizationLevel Method ... 29
GetCustomObject Method .. 31
GetEntityStatus Method .. 32
GetStatusBarText Method .. 34
InitializeMode Property ... 35
Item Property ... 36
KeyControls Collection (SIVApplication Object) ... 37
Label Control (SIVControl Object) ... 38
Last Method .. 40
Level Property (SIVProperty Object) ... 42
LevelNumber Property (SIVProperty Object) .. 44
Login Method... 45
Logout Method .. 48
Message Event .. 50
Name Property (SIVControl Object) .. 55
Name Property (SIVProperty Object) .. 56
New Method .. 57
Next Method .. 59
Notes/Attachments Icon (NoteButton Control) ... 61
Previous Method ... 62
Properties Collection (SIVControl Object) .. 64
Quit Method ... 65
Relative Date Dialog ... 67
SAFCheck Control (SIVControl Object) ... 68
SAFCombo Control (SIVControl Object) .. 70
SAFContainer Control .. 72
SAFFloat Control (SIVControl Object) ... 73
SAFGrid Control ... 75
SAFInteger Control (SIVControl Object) .. 76

iv Object Model Reference Guide

SAFMaskedText Control (SIVControl Object) .. 78
SAFOption Control (SIVControl Object) ... 80
SAFUpdate Control .. 82
Save Method .. 83
SetBusinessDate Method ... 86
SetCurrencyIDs Method .. 88
SetCurrencyView Method .. 90
SetCustomizationLevel Method .. 92
SetStatusBarText Method ... 95
SetTranCurrencyAndRate Method .. 96
SIVApplication Object .. 98
SIVControl Object ... 99
SIVControls Collection ...101
SIVProperties Collection ..103
SIVProperty Object ...105
SIVToolbar Object ..109
StartAppAndAutomate Function (Microsoft SL SDK Applications) ...111
StartApplication Method ...113
StartApplication_2 Method ...116
StatusBar Control (Microsoft SL SDK Application) ..118
SubFormDisplay Event ..119
Value Property (SIVControl Object) ...120
Value Property (SIVProperty Object) ...123
Visible Property ..125

Appendix A: Integrating with Microsoft Office 127

Appendix B: Information for Microsoft SL SDK Programmers 129

Getting a Handle to a Custom Object ...130
Manipulating a Custom Object ...130

Appendix C: Limitations 131

Appendix D: Advanced Tasks 133

Working with Troublesome Controls...133

Appendix E: Error Numbers 135

Cross-Reference Between Various Error-Numbering Schemes ..144

Appendix F: Application Browser 147

Logging on with the Browser ...147
Choosing an Application to Browse ..148
Left and Right Browser Panes ..149
Exercise: Browsing the Sample Application ...149

Appendix G: Visual Basic .NET-Related Changes 151

Programming Interface Changes ..151
Programmatic References ..151
Enumerations for Unmanaged (Visual Basic 6.0) Clients Only...................................152
Default Properties ...153
SIVControl Default Property ..153
Deterministic Freeing of SIVToolbar and SIVApplication Objects154
Error Handling ...154

Support for WinForm Controls ..157
Label Properties ..157

 Contents v

CommandButton Properties ... 158
Support for Remaining WinForm Controls ... 159

Caption Support .. 161
Tag Support ... 161
Color Support... 161
Font support .. 161
Support for COM Controls ... 162
Custom Object Support ... 162

Glossary of Terms 165

Index 169

vi Object Model Reference Guide

 Introduction 1

Introduction

This documentation provides Microsoft® Visual Basic® programmers, other Windows programmers,

and their managers with a complete reference to the object model of Microsoft Dynamics® SL.

Who Should Use this Information
This information is of interest to:

 Visual Basic programmers looking to automate Microsoft Dynamics SL through Visual Basic client

applications that you will write. Visual Basic client programmers are the main audience of this

information. This group includes Microsoft Visual Basic for Applications (VBA) programmers

working in the standard scripting environments of Microsoft® Office applications, as well as other

VBA-enabled applications (such as Microsoft Visio®, AutoCAD® and many others).

 Other Windows programmers who need to write client applications that automate Microsoft

Dynamics SL and who know a programming tool that can create COM automation clients. Such

tools might include Microsoft Visual C++, Borland C++, Borland Delphi, PowerBuilder, and many

other Windows programming tools. Although all of the examples that are offered are Visual Basic-

based, the discussions apply to any COM client.

 Programming managers who want to understand what their programmers need to do and know in

order to manipulate Microsoft Dynamics SL applications through automation.

 Evaluators of Microsoft Dynamics SL’s accessibility as a server to other applications.

What Programmers Should Know

If you plan to use this documentation, you should:

 Know your way around the Visual Basic 2008 or Visual Basic .NET 2010 integrated development

environment (IDE).

 Know how to design a form and place controls on it.

 Know how to instantiate objects programmatically.

 Know how to program with the properties and methods of objects.

 Know how to program with basic constructs such as looping and branching.

 Know how to program with procedures, including sub and function procedures, how to pass

parameters, and how to return values from functions.

 Know how to write object model automation clients in Visual Basic.

If you are a programmer working in a language other than Visual Basic, you should have knowledge

and skills that are equivalent to those mentioned above for your chosen development environment.

You should also be comfortable with translating Visual Basic source code into your own programming

language.

For more information on the differences using Object Model with Visual Basic 6 versus Visual Basic

2005 or Visual Basic 2008, see Appendix A in the Visual Basic 2005 Conversion Toolkit for Microsoft

Dynamics SL help or user guide.

2 Object Model Reference Guide

 Reference 3

Reference

Button Control (SIVControl Object)
Refers to the standard Visual Basic Button control.

Applies To

SIVControl object

Syntax

Object(“Button Name”)

The Button control syntax has these parts:

Part Description

object An instance of SIVApplication.

Button Name Required string. Corresponds to the name of a Button control exposed by

the SIVApplication object.

Remarks

If you set the Value property of an instance of a SIVControl object that represents a Button to True,

then you cause its Click event to fire. In other words, setting the Value property to True is the same as

the interactive user clicking on the Button. As with all SIVControl objects, you can perform this

manipulation either by setting the Value property of the SIVControl instance that holds the Button, or

you can implicitly see the Value by simply referring to the SIVControl instance itself (see examples

below).

Note: in the case of the Button, the underlying Visual Basic control’s default property is also named

Value, so it would also be possible to refer explicitly to the control’s Value property by name in the

Properties collection (see examples). This would not work for all standard Visual Basic controls, many

of whose default properties are not named “Value.”

You can also manipulate the Button’s other standard Visual Basic properties through the Microsoft

Dynamics SL Object Model by using the SIVControl instance’s Properties collection of SIVProperty

objects (see examples).

Possible Exceptions

7556 — Attempt to set Value property of disabled Button

See Also

SIVControl Object

Example (Visual Basic 6.0 client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication

'Following are four different ways
'to manipulate a Button control on
'the application screen:

'this way --

 Dim sivctrlCmdOK As SIVControl

4 Object Model Reference Guide

 Set sivctrlCmdOK = sivMyApp.Controls("cmdOK")

 sivctrlCmdOK = True

 sivctrlCmdOK.Properties.Item("Enabled") = False

'or this way --

 sivMyApp.Controls("cmdOK") = True

 sivMyApp.Controls("cmdOK").Properties.Item("Enabled") = False

'or this way --

 sivMyApp.Controls("cmdOK").Value = True

 sivMyApp.Controls("cmdOK").Properties.Item("Enabled") = False

'or this way --

 sivMyApp.Controls("cmdOK").Properties.Item("Value") = True

 sivMyApp.Controls("cmdOK").Properties.Item("Enabled") = False

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication

'Following are three different ways to manipulate a Button control on

'the application screen:

'this way --

Dim sivctrlCmdOK As SIVControl

sivctrlCmdOK = sivMyApp.Controls("cmdOK")

sivctrlCmdOK.Value = True

sivctrlCmdOK.Properties("Enabled").Value = False

'or this way --

sivMyApp.Controls("cmdOK").Value = True

sivMyApp.Controls("cmdOK").Properties("Enabled").Value = False

'or this way --

sivMyApp.Controls("cmdOK").Properties.Item("Value").Value = True

sivMyApp.Controls("cmdOK").Properties.Item("Enabled").Value = False

sivMyApp.Controls("cmdOK").Properties.Item("Enabled").Value = False

 Reference 5

Cancel Method
Cancels pending changes made to all application entities.

Applies To

SIVApplication object

Syntax

object.Cancel

The Cancel method syntax has these parts:

Part Description

Object An instance of SIVApplication.

Remarks

This method abandons any changes to all data entities in the current application since the last save.

If the SIVApplication object is visible to the user, the screen will be refreshed with the contents of the

current data entity, or it will refresh to the New state if no entity was retrieved prior to any changes.

The Cancel method is equivalent to the user action of clicking Cancel on the toolbar, or pressing

ESC.

Example

'Assumes sivMyApp is an already-instantiated SIVApplication object

sivMyApp.Cancel

6 Object Model Reference Guide

Controls Collection (SIVApplication Object)
Returns a reference to a collection of SIVControl objects.

Applies To

SIVApplication object

Syntax

object.Controls

where object represents an instance of SIVApplication.

Methods

Count method, Item method

Remarks

You can manipulate SIVControl objects using the reference returned by the Controls property (see

examples).

Note that controls originally programmed in a Microsoft Dynamics SL application and controls added

via Customization Manager have no difference in the Microsoft Dynamics SL Object Model.

See Also

SIVControl Object, SIVControls Collection, KeyControls Collection (SIVApplication Object)

Example (Visual Basic 6.0 Client)

'Set a control object variable
'to point to a control in a screen's Controls collection

 Dim ctrlCurr As SIVControl

 Set ctrlCurr = sivMyApp.Controls("cTotalBalance")

 ctrlCurr = -300

'OR...Change a control directly

 sivMyApp.Controls("cTotalBalance") = -300

Example (Visual Basic 2005 Client)

'Set a control object variable

'to point to a control in a screen's Controls collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivMyApp.Controls("cTotalBalance")

ctrlCurr.Value = -300

'OR...Change a control directly

sivMyApp.Controls("cTotalBalance").Value = -300

 Reference 7

Constants
sivCurrencyView

Constant Value Description

sivCurrencyViewBase 1 Indicates screen is showing Base Currency values.

sivCurrencyViewTransaction 2 Indicates screen is showing Transaction Currency values.

sivCustomizationLevel

Constant Value Description

sivCstLvlStandard 1 Represents the Standard customization level.

sivCstLvlSupplementalProduct 2 Represents the Supplemental Product customization level.

sivCstLvlAllUsers 3 Represents the All Users customization level.

sivCstLvlOneUser 4 Represents the One User customization level.

sivCstLvlSelf 5 Represents the Self customization level.

sivEntityStatus

Constant Value Description

sivEntStatusInserted 1 Indicates the entity’s status is Inserted.

sivEntStatusUpdated 2 Indicates the entity’s status is Updated.

sivEntStatusNotChanged 3 Indicates the entity’s status is NotChanged.

sivMessageResponse

Constant Value Description

sivMsgRspOk 1 Instructs the Object Model to invoke the OK button on the

message.

sivMsgRspCancel 2 Instructs the Object Model to invoke the Cancel button on the

message.

sivMsgRspAbort 3 Instructs the Object Model to invoke the Abort button on the

message.

sivMsgRspRetry 4 Instructs the Object Model to invoke the Retry button on the

message.

sivMsgRspIgnore 5 Instructs the Object Model to invoke the Ignore button on the

message.

sivMsgRspYes 6 Instructs the Object Model to invoke the Yes button on the

message.

sivMsgRspNo 7 Instructs the Object Model to invoke the No button on the

message.

sivMsgRspClose 8 Instructs the Object Model to invoke the Close button on the

message.

8 Object Model Reference Guide

sivMessageType

Constant Value Description

sivMsgOk 1 Indicates the message box contains an OK button.

sivMsgOkCancel 2 Indicates the message box contains an OK button and a Cancel

button.

sivMsgAbortRetryIgnore 3 Indicates the message box contains an Abort button, a Retry

button, and an Ignore button.

sivMsgYesNo 4 Indicates the message box contains a Yes button and a No

button.

sivMsgYesNoCancel 5 Indicates the message box contains a Yes button, a No button,

and a Cancel button.

sivMsgRetryCancel 6 Indicates the message box contains a Retry button and a

Cancel button.

sivRecordFound

Constant Value Description

sivRecFndNotFound 1 Indicates a record was not found for the specified data entity.

sivRecFndFound 2 Indicates a record was found for the specified data entity.

 Reference 9

ControlType Property (SIVProperty Object)
A string representing the type (class name) of a control in an SIVApplication object.

Applies To

SIVProperty Object

Syntax

Properties(“ControlType”)

where Properties represents an instance of SIVProperties.

Remarks

The ControlType property is display only.

It represents the control type, or class name to which a control on an SIVApplication screen belongs.

It is useful to know the type of each control that you are dealing with when performing mass

adjustments to the controls belonging to an SIVApplication object’s Controls collection (see examples

below), or when a control whose type may be indeterminate is passed as a parameter to a procedure.

Example (Visual Basic 6.0 Client)

'Make sure all Label controls have Unhighlighted text

'Assume SIVMyApp is an instance of SIVApplication.

Dim ctrlCurr As SIVControl

For Each ctrlCurr In sivMyApp.Controls

 If ctrlCurr.Properties.Item("ControlType").Value = "Label" Then

 Dim fontProperty As IFontDisp

 Set fontProperty = ctrlCurr.Properties.Item("Font").Value

 fontProperty.Bold = False

 End If

Next ctrlCurr

10 Object Model Reference Guide

Example (Visual Basic 2005 Client)

'Make sure all Label controls have Unhighlighted text

'Assume SIVMyApp is an instance of SIVApplication.

Dim ctrlCurr As SIVControl

For Each ctrlCurr In sivMyApp.Controls

 If ctrlCurr.Properties("ControlType").Value = "Label" Then

 Dim fontProperty As sivFont

 fontProperty = ctrlCurr.Properties("Font").Value

 fontProperty.Bold = False

 End If

Next ctrlCurr

 Reference 11

Count Property
Returns the number of objects in a collection.

Applies To

Controls collection (SIVApplication object), Properties collection (SIVControl object)

Syntax

object.Count

The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks

You can use this property to create a For...Next loop that loops through all the elements of a collection

(see the example below). However, For...Each loops are usually more practical for this purpose (see

documentation on the SIVControls and SIVProperties collections for examples).

Count is one-based, as is the index of the Controls and Properties collections. This means that the

highest index number of the Controls collection would be Controls.Count, and the highest index

number of the Properties collection would be Properties.Count (see example).

See Also

Controls Collection (SIVApplication Object), Properties Collection (SIVControl Object)

Example

'Assumes sivMyApp is an instance of
'SIVApplication

 Dim i As Integer, j As Integer

 For i = 1 To sivMyApp.Controls.Count

 For j = 1 To sivMyApp.Controls(i).Properties.Count

 '...do something with the current property of

 'the current control

 Next j

 Next i

12 Object Model Reference Guide

Delete Method
Deletes data for a specified entity and any dependent entities.

Applies To

SIVApplication

Syntax

RetVal = object.Delete Entity

The Delete method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data

entities. (Note: This is the Microsoft Dynamics SL data level.) See

remarks below.

RetVal A value of type sivRecordFound. Corresponds to one of the values

described below under the Returns section.

Returns

Normal (header level)

 sivRecFndFound - 2 — Delete call at all non-Detail (that is, normal or header) levels always returns

sivRecFndFound.

Detail (transaction or grid level)

One of the two following values, of type sivRecordFound:

 sivRecFndNotFound – 1 — Means that no record following the deleted record was located upon

execution of the Delete method.

 sivRecFndFound - 2 — Means that a record following the deleted record was successfully located

upon execution of the Delete method.

Note: The value that ends up in RetVal has nothing to do with whether or not a record was successfully

deleted. It simply describes the state of the record pointer for Entity after the call to the Delete

method. To check the success of the deletion attempt, set an error trap as shown in the example.

Remarks

Deletes the data for the specified entity from the database. You can obtain the Entity string for a

particular set of controls by getting the Level property from the Properties collection of one of the

controls.

The Delete method is equivalent to the user action of pressing the DELETE key on the toolbar or

keying CTRL+D.

For Detail (grid or transaction) levels, if the Delete method is successful (no error was raised), then the

current record changes to one of the following:

 If a record exists after the deleted record in logical order, then the current record becomes the

next record after the deleted record and Retval is equal to sivRecFndFound.

 If no record existed after the deleted record (that is, the record just deleted was the last record in

logical order in the table), then the current record becomes blank and Retval is equal to

sivRecFndNotFound.

If the SIVApplication object is visible to the user, the new record’s contents display in the application

screen on the user’s desktop.

 Reference 13

For non-detail (normal or header) levels, if the Delete method is successful (no error was raised), then

the current record at that level is reset to nothing (that is, as if the user hit the New key (CTRL+N) on

that level).

The Delete method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. Control does not

return to the automation client until the completion of all Microsoft Dynamics SL processing caused by

the call to this method, whether the processing comes from the core Microsoft Dynamics SL kernel,

the original application, or any customization of the application.

Possible Exceptions

 7525 — Invalid entity string

 7526 — Deletion is disabled for this entity

Example

'Assumes sivMyApp is an already-instantiated
'SIVApplication object

 On Error GoTo DELETE_ERROR

 Dim sivrfResult As sivRecordFound

 sivrfResult = sivMyApp.Delete("Batch")

 If sivrfResult = sivRecFndNotFound Then

 MsgBox "No record found after delete"

 End If

 Exit Sub

DELETE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7525

 MsgBox "Entity 'Batch' does not exist"

 Resume Next

 Case 7526

 MsgBox "DELETE not permitted here"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

14 Object Model Reference Guide

DisableObjectModel Statement (Microsoft SL SDK

Applications)
Disables the Object Model for a Microsoft SL SDK application.

Syntax

DisableObjectModel

Remarks

If the Microsoft SL SDK programmer calls this statement in the Microsoft SL SDK application, then no

Object Model automation client will be able to automate this application using the Object Model. If an

automation client attempts to automate this application, then the StartApplication method of the

SIVApplication object raises error 7563.

For this statement to function properly, the Microsoft SL SDK programmer must call this statement

between the calls to Applinit and ScreenInit in the Form_Load event of the Microsoft SL SDK

application’s Form1.

Possible Exceptions

None

Example

'Code within Form1 of a Microsoft SL SDK application
Sub Form_Load ()

 'Standard Application Initialization Call
 Call ApplInit

 'Standard Setaddr Calls

 'Standard sqlcursor Call

 DisableObjectModel

 'Standard Screen Initialization Call
 Call ScreenInit

End Sub

 Reference 15

Dispose Method
Destroys an instance of an object synchronously.

Applies To

SIVToolbar, SIVApplication

Syntax

object.Dispose

The Delete method syntax has these parts:

Part Description

object An instance of SIVApplication or SIVToolbar.

Remarks

In Visual Basic 2005, the rules for deterministically freeing .NET objects conform to the behavior of the

CLR garbage collection process. Simply setting a variable to Nothing is not enough to cause an

immediate cleanup of that object’s resources. Instead, it simply marks the object for garbage

collection. The garbage collection process runs periodically to free and reorganize workstation

memory. Until that occurs, a toolbar or application could remain active on the workstation indefinitely.

To allow Object Model clients the ability to immediately free the Toolbar or application, the Dispose

method has been implemented on both the SIVToolbar and SIVApplication objects. Calling this

method will immediately destroy that object and free its resources, and permit the same behavior

present in prior versions of Microsoft Dynamics SL.

See Also

Deterministic Freeing of SIVToolbar and SIVApplication Objects

Example

'Close an application

sivApp.Quit()

sivApp.Dispose()

sivApp = Nothing

'Close the Toolbar

sivToolbar.Logout()

sivToolbar.Quit()

sivToolbar.Dispose()

sivToolbar = Nothing

16 Object Model Reference Guide

DSLDate Control (SIVControl Object)
Refers to the Microsoft Dynamics SL DSLDate control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“DSLDate Name”)

The DSLDate control syntax has these parts:

Part Description

object An instance of SIVApplication.

DSLDate Name Required string. Corresponds to the name of the DSLDate control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains the DSLDate control has a Value property that

corresponds to the current contents of that control as seen by the interactive user.

As with all SIVControl objects, you can manipulate this value either by setting the Value property of the

SIVControl instance that holds the DSLDate, or you can implicitly refer to the Value by simply referring

to the SIVControl instance itself (see examples below).

Note about date formats: The only format allowed for dates throughout the Microsoft Dynamics SL

Object Model is a String or String Variant of the format “MM/DD/YYYY.” All reads will return values in

this format. If you attempt to write the DSLDate Value property with an invalid date format, you will

generate an exception. One way to make sure that dates of unknown format will not cause a problem

when you try to assign them to the DSLDate, would be to use the standard Visual Basic Format

function, as illustrated in the example.

You can also manipulate the DSLDate’s Microsoft Dynamics SL and standard Visual Basic properties

through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s Properties

collection of SIVProperty objects (see examples).

For further particulars about the behavior of the DSLDate control, see the Microsoft SL SDK

documentation.

Possible Exceptions

7542 — Incorrect date format (must be MM/DD/YYYY)

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication.

'Following are two different ways

'to manipulate a DSLDate control on

'the application screen:

'this way --

Dim sivctrlcSellDate As SIVControl

 Reference 17

sivctrlcSellDate = sivMyApp.Controls("cSellDate")

sivctrlcSellDate.Value = Today.Date.ToString("MM/dd/yyyy")

'or this way --

sivMyApp.Controls("cSellDate").Value = Today.Date.ToString("MM/dd/yyyy")

'NOTE the use of the formatting behavior of Date.ToString to ensure that

'the format of the assigned date is MM/DD/YYYY. This

'is the only format that a DSLDate will accept

'(all other formats raise an exception).

18 Object Model Reference Guide

EventLog Property
Contains the fully-qualified path to the event log created by the last process run during the current

session of the application.

Applies To

SIVApplication

Syntax

RetVal = Object.EventLog

The EventLog property syntax has these parts:

Part Description

object A SIVApplication object.

RetVal A string expression containing the fully-qualified path and file name of

the event log generated by the last process run during the current

session of the SIVApplication object.

Remarks

The EventLog property is display only.

The application creates an event log file by starting a process that creates an event log.

If the application has not run any processes during the current session, then the EventLog property

contains a blank string.

If the last process that ran during the current application session did not generate an event log, then

the EventLog property also contains a blank string.

Attempts to read the EventLog property, as well as all other property get/set operations and method

calls throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the

automation client. That is, control does not return to the automation client until the completion of all

Microsoft Dynamics SL processing caused by the attempt to set this property, whether the processing

comes from the core Microsoft Dynamics SL kernel, the original application, or any customization of

the application.

Possible Exceptions

None

Example (Visual Basic 6 Client):

'Assumes sivApp is an instantiated copy of
'SIVApplication

'METHOD 1 FOR FIRING A PROCESS

'Fire off a process behind the command button

sivApp.Controls("cBeginProcessing") = True

'...and open its EventLog (maybe we will print it)

Dim iHandle As Integer

iHandle = FreeFile

Open sivApp.EventLog For Input As iHandle

'Put contents of the file into a string variable

Dim strLogContents As String

 Reference 19

strLogContents = Input(LOF(iHandle, #iHandle)

'... then do something with the string variable

'(not shown here: perhaps print, search, or parse it)

'METHOD 2 FOR FIRING A PROCESS

'Set the screen's Action field to "Release Now"

sivApp.Controls("cAction") = "Release Now"

'Then Save the screen's contents

sivApp.Save

'...and do similar things with its event log

'to what's shown above (not shown here)

Example (Visual Basic 2005 Client)

'Assumes sivApp is an instantiated copy of
'SIVApplication

'METHOD 1 FOR FIRING A PROCESS

'Fire off a process behind the command button

sivApp.Controls("cBeginProcessing") = True

'Open its EventLog and put contents of the file into a

'string variable (maybe we will print it)

Dim strLogContents As String

strLogContents = My.Computer.FileSystem.ReadAllText(sivApp.EventLog)

'... then do something with the string variable

'(not shown here: perhaps print, search, or parse it)

'METHOD 2 FOR FIRING A PROCESS

'Set the screen's Action field to "Release Now"

sivApp.Controls("cAction") = "Release Now"

'Then Save the screen's contents

sivApp.Save

'...and do similar things with its event log

'to what's shown above (not shown here)

20 Object Model Reference Guide

DisableObjectModel Statement (Microsoft SL SDK

Applications)
Disables the Object Model for a Microsoft SL SDK application.

Syntax

DisableObjectModel

Remarks

If the Microsoft SL SDK programmer calls this statement in the Microsoft SL SDK application, then no

Object Model automation client will be able to automate this application using the Object Model. If an

automation client attempts to automate this application, then the StartApplication method of the

SIVApplication object raises error 7563.

For this statement to function properly, the Microsoft SL SDK programmer must call this statement

between the calls to Applinit and ScreenInit in the Form_Load event of the Microsoft SL SDK

application’s Form1.

Possible Exceptions

None

Example

'Code within Form1 of a Microsoft SL SDK application
Sub Form_Load ()

 'Standard Application Initialization Call
 Call ApplInit

 'Standard Setaddr Calls

 'Standard sqlcursor Call

 DisableObjectModel

 'Standard Screen Initialization Call
 Call ScreenInit

End Sub

 Reference 21

ExposeCustomObject Statement (Microsoft SL SDK

Applications)
Allows a Microsoft SL SDK application to expose a custom object to automation clients.

Syntax

ExposeCustomObject CustomObject As Object

The ExposeCustomObject statement syntax has these parts:

Part Description

CustomObject Object variable instantiated from a custom class of the Microsoft SL SDK

application.

Remarks

When the Microsoft SL SDK application exposes the custom object pointed to by Object, then

automation clients can use the GetCustomObject method of the SIVApplication object to get a pointer

to the object. The automation clients can then use this object pointer to manipulate the custom

object’s properties and methods.

For this statement to function properly, the Microsoft SL SDK programmer should call this statement

between the calls to Applinit and ScreenInit in the Form_Load event of the Microsoft SL SDK

application’s Form1.

See “Custom Object Support” for comments on Visual Basic .NET changes necessary for this API.

Possible Exceptions

None

Example

'Code within a Microsoft SL SDK application:
'Assume that
'1) CustomObject is a public class containing the attribute ComVisible(True)
'[General Declarations section of a BAS module]
Public oCustom As New CustomObject

'[in the project's Form1]
Sub Form_Load ()

 'Standard Application Initialization Call
 Call ApplInit

 'Standard Setaddr Calls

 'Standard sqlcursor Call

 ExposeCustomObject oCustom

 'Standard Screen Initialization Call
 Call ScreenInit

End Sub

22 Object Model Reference Guide

First Method
Navigates to the first record of a specified entity for an SIVApplication object.

Applies To

SIVApplication

Syntax

object.First Entity

The First method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data entities.

(Note: This is the Microsoft Dynamics SL data level.) See remarks below.

RetVal A value of type sivRecordFound. Corresponds to one of the values described below

under the Returns section.

Returns

One of the two following values:

 sivRecFndNotFound - 1 — Means that no record was located upon execution of the First method.

 sivRecFndFound - 2 — Means that a record was successfully located upon execution of the First

method.

Remarks

Navigates to the first record of the entity specified by Entity for the SIVApplication object. You can

obtain the entity string for a particular set of controls by getting the Level property from the Properties

collection of one of the controls.

If the current record was already the first record in Entity, the First method always returns

sivRecFndFound even if it is already at the first record. The First method returns sivRecFndNotFound

only if there are no entity records at all.

The First method is equivalent to the user action of clicking the First navigation button on the toolbar.

If the First method is successful (return value was sivRecFndFound) and the SIVApplication object is

visible to the user, then the new record’s contents will display in the application screen on the user’s

desktop.

The First method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

Possible Exceptions

 7525 — Invalid entity string

 7528 — First method is disabled for this entity

 Reference 23

Example (Visual Basic 6 Client)

'Assumes sivMyApp is an already-instantiated
'SIVApplication object

 On Error GoTo NAVIGATE_ERROR

 Dim sivrfResult As sivRecordFound

 sivrfResult = sivMyApp.First("Batch")

 If sivrfResult = sivRecFndNotFound Then

 MsgBox "Navigate to a new Record"

 End If

 Exit Sub

NAVIGATE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7525

 MsgBox "Entity 'Batch' does not exist"

 Resume Next

 Case 7528

 MsgBox "FIRST not permitted here"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

Example (Visual Basic 2005 Client)

'Assumes sivMyApp is an already-instantiated

'SIVApplication object

Dim sivrfResult As sivRecordFound

Try

 sivrfResult = sivMyApp.First("Batch")

 If sivrfResult = sivRecordFound.sivRecFndNotFound Then

 MsgBox("Navigate to a new Record")

 End If

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError

> 0 Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7525

 MsgBox("Entity 'Batch' does not exist")

24 Object Model Reference Guide

 Case 7528

 MsgBox("FIRST not permitted here")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Exception", ex.Source))

End Try

 Reference 25

GetBusinessDate Method
Gives the current Microsoft Dynamics SL business date.

Applies To

SIVToolbar

Syntax

object.GetBusinessDate Month, Day, Year

The GetBusinessDate method syntax has these parts:

Part Description

object An instance of SIVToolbar.

Month ByRef Integer. Represents the calendar month of the current business

date. Values can be 1 - 12.

Day ByRef Integer. Represents the day of the month of the current business

date. Values can be 1 - 31.

Year ByRef Integer. Represents the four-digit year of the current business

date. Values can be any four-digit number.

Remarks

Returns the current Microsoft Dynamics SL business date in its three parameters. Before calling this

method in your code, you should prepare three integer variables to hold the month, day, and year and

pass these variables as the respective arguments to the method (see examples).

The GetBusinessDate method, as well as all other methods and property set operations throughout

the Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

7506 — Not Logged In.

See Also

SetBusinessDate Method

Example (Visual Basic 6 Client)

'Assumes sivTB is an already-instantiated
'SIVToolbar object
 Dim iMonth As Integer
 Dim iDay As Integer, iYear As Integer

 On Error GoTo GET_DATE_ERROR

 sivTB.GetBusinessDate iMonth, iDay, iYear

 '...do something with the date information here

 Exit Sub

GET_DATE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7506

 MsgBox "Not logged in"

 Resume Next

 Case Else

26 Object Model Reference Guide

 MsgBox Err.Number & ": " _

 & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

Example (Visual Basic 2005 Client)

'Assumes sivTB is an already-instantiated

'SIVToolbar object

Dim iMonth As Integer

Dim iDay As Integer, iYear As Integer

Try

 sivTB.GetBusinessDate(iMonth, iDay, iYear)

 '...do something with the date information here

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7506

 MsgBox("Not logged in")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Reference 27

GetCurrencyIDs Method
Gets the transaction currency ID for the current screen.

Applies To

SIVApplication

Syntax

object.GetCurrencyIDs ByRef TransactionCurrencyID As String, ByRef IntermediateCurrencyID As

String

The GetCurrencyIDs method syntax has these parts:

Part Description

object An instance of SIVApplication.

TransactionCurrencyID ByRef string representing a valid CuryID code for the logged-in company

and database.

IntermediateCurrencyID ByRef string. Reserved for future use. Has no effect at this time.

Remarks

Allows you to get the current screen’s transaction currency ID.

Before calling this method, you should prepare two String variables and pass them as arguments to

the method. After the call to the method, the variable that you passed for the TransactionCurrencyID

will contain the currency ID for the transaction of the current screen.

At this point, IntermediateCurrencyID should always return as a blank string. It is reserved for future

use and has no significance in the current version of the Microsoft Dynamics SL Object Model.

The GetCurrencyIDs method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

See Also

SetCurrencyIDs Method

Example

'Assumes sivApp is an already-instantiated
'SIVApp object

 Dim strTransCuryID As String

 Dim strIntCuryID As String

 sivApp.GetCurrencyIDs _

 strTransCuryID, strIntCuryID

 MsgBox strTransCuryID,,"Transaction Currency"

 'strIntCuryID will be blank

28 Object Model Reference Guide

GetCurrencyView Method
Returns the display currency for currency amounts on the current screen.

Applies To

SIVApplication

Syntax

Retval = object.GetCurrencyView

The GetCurrencyView method syntax has these parts:

Part Description

object An instance of SIVApplication.

Retval Integer of enumerated type sivCurrencyView representing the type of

currency that amounts are currently displayed in (either system Base

Currency, or screen Transaction Currency).

Remarks

Allows you to find out whether current screen’s is displaying currency in the system Base Currency or

in the screen Transaction Currency.

The return value from this method will be one of the enumerated constants in the sivCurrencyView

type indicating either the system Base Currency or the screen’s Transaction Currency.

The GetCurrencyView method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

See Also

SetCurrencyView Method

Example

'Assumes sivApp is an already-instantiated
'SIVApp object

 Dim iCuryView As sivCurrencyView

 iCuryView = sivApp.GetCurrencyView

 If iCuryView = sivCurrencyViewBase Then

 MsgBox "Base Currency", , "Current Screen display"

 Else

 MsgBox "Tran Currency", , "Current Screen display"

 End If

 Reference 29

GetCustomizationLevel Method
Gets the current customization level of the session.

Applies To

SIVApplication

Syntax

object.GetCustomizationLevel CustomizationLevel, UserID, ExcludeMacroCode

The GetCustomizationLevel method syntax has these parts:

Part Description

object An instance of SIVToolbar.

CustomizationLevel ByRef Integer of type sivCustomizationLevel. Represents the current

customization level of the toolbar session.

UserID String. The user ID to apply when setting the customization level to

sivCstLvlOneUser.

ExcludeMacroCode Boolean. Setting to True excludes macro code, while setting to False

includes macro code.

Remarks

Returns the current Microsoft Dynamics SL customization level in the ByRef argument customization

level, as well as information about the user ID (only meaningful when customization level is

SingleUser) and whether or not macro code is excluded from customizations for this session. Before

calling this method in your code, you should prepare integer, string, and Boolean variables to hold the

customization level, user ID, and ExcludeMacroCode values, respectively, and pass these variables as

the arguments to the method (see example).

The SIVToolbar object must already be logged on to a database for this method call to work.

The GetCustomizationLevel method, as well as all other methods and property set operations

throughout the Microsoft Dynamics SL Object Model, is synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the call to this method, whether the processing comes from the

core Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

7506 — Not logged in

See Also

SetCustomizationLevel Method

Example

'Assumes sivTB is an already-instantiated

'SIVToolbar object

 Dim iCustLevel As sivCustomizationLevel

 Dim strUserID As String

 Dim blnExcludeMacroCode As Boolean

 On Error GoTo GET_CUSTLEVEL_ERROR

 sivTB.GetCustomizationLevel iCustLevel, _

 strUserID, _

 blnExcludeMacroCode

30 Object Model Reference Guide

 '...do something with the customization information here

 Exit Sub

GET_CUSTLEVEL_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7506

 MsgBox "Not logged in"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

 Reference 31

GetCustomObject Method
Returns a handle to the custom object defined by the underlying Microsoft SL SDK application.

Applies To

SIVApplication

Syntax

Set Retval = object.GetCustomObject()

The GetCustomObject method syntax has these parts:

Part Description

RetVal A variable of type Object.

object An instance of SIVApplication.

The GetCustomObject method returns a handle to an object that may be defined in the underlying

Microsoft Dynamics SL application and that the underlying application has exposed with a call to

ExposeCustomObject.

If the underlying application does not expose a custom object, then the value returned by

GetCustomObject is equal to Nothing (see example below).

Calls to the GetCustomObject method, as well as all property set operations and other method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the call to this method, whether the processing comes from the

core Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

Example

'Assumes that sivApp is an already-instantiated
'SIVApplication object

 Dim oCustom As Object

 Set oCustom = sivApp.GetCustomObject()

 If oCustom Is Nothing Then

 MsgBox "No Custom Object Available"

 Else

 '...do something with custom object

 End If

32 Object Model Reference Guide

GetEntityStatus Method
Returns the state of the specified data entity.

Applies To

SIVApplication

Syntax

RetVal = object.GetEntityStatus(Entity As String)

The GetEntityStatus method syntax has these parts:

Part Description

RetVal An integer of enumerated type sivEntityStatus.

object An instance of SIVApplication.

Entity A string representing the data entity whose status you are checking.

You can use the GetEntityStatus method to detect whether or not a specific data entity belonging to an

SIVApplication object has changed since the beginning of the session with the current recordset. The

exact value returned by GetEntityStatus indicates the type of change that has happened (update,

insert, or no change).

The value of Entity is a string that names the particular data entity in the application that you are

checking. If you are not certain of the exact name of the data entity, then you can get the name by

checking the Level property of any control whose data belongs to that entity (see examples below).

Calls to the GetEntityStatus method, as well as all property set operations and other method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the call to this method, whether the processing comes from the

core Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

Example (Visual Basic 6 Client)

'Assumes that sivApp is an instantiated copy of
'SIVApplication

'Set a control object variable to point
'to a control in the app's Controls collection
Dim ctrlCurr As SIVControl
Set ctrlCurr = sivApp.Controls("cTotalBalance")

'Get the name of that control's DataEntity

Dim strLevel as String

strLevel = ctrlCurr.Properties.Item("Level")

'Get the entity's status

Dim iStatus As sivEntityStatus

iStatus = sivApp.GetEntityStatus(strLevel)

'React to the status

Select Case iStatus

 Case sivEntStatusUpdated

 MsgBox "Updated"

 Case sivEntStatusInserted

 MsgBox "Inserted"

 Case sivEntStatusNotChanged

 Reference 33

 MsgBox "No Change"

End Select

Example (Visual Basic 2005 Client)
'Assumes that sivApp is an instantiated copy of

'SIVApplication

'Set a control object variable to point

'to a control in the app's Controls collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivApp.Controls("cctrltot")

'Get the name of that control's DataEntity

Dim strLevel As String

strLevel = ctrlCurr.Properties("Level").Value

'Get the entity's status

Dim iStatus As sivEntityStatus

iStatus = sivApp.GetEntityStatus(strLevel)

'React to the status

Select Case iStatus

 Case sivEntityStatus.sivEntStatusUpdated

 MsgBox("Updated")

 Case sivEntityStatus.sivEntStatusInserted

 MsgBox("Inserted")

 Case sivEntityStatus.sivEntStatusNotChanged

 MsgBox("No Change")

End Select

34 Object Model Reference Guide

GetStatusBarText Method
Returns the text and the tooltip text for the text pane of the status bar.

Applies To

SIVApplication

Syntax

object.GetStatusBarText Text, ToolTipText

The SetStatusBarText method syntax has these parts:

Part Description

object An instance of SIVToolbar.

Text ByRef string variable representing text currently displayed in the text

pane of the application screen’s status bar.

ToolTipText ByRef string representing the current ToolTip text that will pop up when

the user pauses the mouse over the text pane of the application screen’s

status bar.

Remarks

You can detect the text currently displayed on the application screen’s status bar text panel as well as

the ToolTip text for that panel with the GetStatusBarText method.

The status bar is the area at the bottom of a Microsoft Dynamics SL application screen that contains

information in various panes. Panes include information about date and time as well as a text pane

with variable information.

The GetStatusBarText method retrieves information only about the text pane in its Text argument and

the ToolTip text for the same pane in its ToolTipText argument. ToolTipText represents the contents of

the popup that appears when the user pauses the mouse over the text pane.

Calls to the GetStatusBarText method, as well as all property set operations and other method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by this method call, whether the processing comes from the core

Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

Example

'Assumes sivApp is an already-instantiated
'SIVApplication object

Dim strSBText As String
Dim strSBToolTip As String
 sivApp.GetStatusBarText strSBText, _
 strSBToolTip

MsgBox "Status Bar Text = " & strSBText
MsgBox "ToolTip = " & strSBToolTip

 Reference 35

InitializeMode Property
Controls whether or not the current toolbar session is in Initialize mode.

Applies To

SIVToolbar

Syntax

Object.InitializeMode = Boolean
 Boolean = Object.InitializeMode

The InitializeMode property syntax has these parts:

Part Description

object A SIVToolbar object.

Boolean A Boolean expression specifying whether Initialize mode is on or off.

Settings

The settings for Boolean are:

Setting Description

True Initialize mode is on.

False (Default) Initialize mode is off.

Remarks

For the SIVToolbar, an InitializeMode property setting of True would toggle on the system’s Initialize

mode, allowing the currently logged-on user to set all fields on application screens.

An InitializeMode property setting of False (the default) would toggle off the system’s Initialize mode,

signifying that user could only set fields as specified by the underlying application and customizations.

Attempts to set the InitializeMode property, as well as all other property set operations and method

calls throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the

automation client. That is, control does not return to the automation client until the completion of all

Microsoft Dynamics SL processing caused by the attempt to set this property, whether the processing

comes from the core Microsoft Dynamics SL kernel, the original application, or any customization of

the application.

Possible Exceptions

7506 — Not logged in

See Also

SIVToolbar Object

Example

Set sivtbCurrent = New SIVToolbar

sivtbCurrent.Login "CHOMPER", "MSINTL", _
"NWIND", "NDavolio", "yowsa"

dim sivMyApp As SIVApplication

Set sivMyApp = _

sivtbCurrent.StartApplication("tx\MyApp.exe")

sivtbCurrent.InitializeMode = True

36 Object Model Reference Guide

Item Property
Returns a specific member of a collection, either by position or by key.

Applies To

Controls collection (SIVApplication object), Properties collection (SIVControl object)

Syntax

object.Item(index)
 object(index)

The Item property syntax has the following parts:

Part Description

object Required. An object from the Applies To list.

index Required string or integer expression. If an integer expression, index

must be a number between 1 and the value of the collection’s Count

property. If a string expression, index must correspond to the item’s

name.

Remarks

If the value provided by index does not exist in the collection, then a runtime error occurs.

Item is the default property of a collection, so it is never necessary to specify Item in .NET code. All you

really ever need is the collection name and the index value (see the second syntax example above and

the code example below). The exception is that you need to specify Item when you code in Visual Basic

6.0.

Possible Exceptions

None

See Also

Controls Collection (SIVApplication Object), Properties Collection (SIVControl Object)

Example (Visual Basic 2005 Client)

'Assumes sivMyApp is an instance of
'SIVApplication

Dim currCtrl as SIVControl

Dim currProp as SIVProperty

'the longer, explicit syntactic form :

Set currCtrl = SIVApplication.Controls.Item("cTotal")

Set currProp = currCtrl.Properties.Item("BackColor")

'the shorter, implicit syntactic form:

Set currCtrl = SIVApplication.Controls("cTotal")

Set currProp = currCtrl.Properties("BackColor")

 Reference 37

KeyControls Collection (SIVApplication Object)
Returns a reference to a collection of SIVControl objects.

Applies To

SIVApplication object

Syntax

object.KeyControls

where object represents an instance of SIVApplication.

Methods

Count method, Item method

Remarks

You can manipulate SIVControl objects using the reference returned by the KeyControls property (see

examples). This collection contains only the key controls for the application. These controls are also

contained in the Controls collection.

Note: Controls originally programmed in a Microsoft Dynamics SL application and controls added via

Customization Manager have no difference in the Microsoft Dynamics SL Object Model.

See Also

Controls Collection (SIVApplication Object), SIVControl Object, SIVControls Collection

Example (Visual Basic 6 Client)

'Set a control object variable

'to point to a control in a screen's Controls collection

 Dim ctrlCurr As SIVControl

 Set ctrlCurr = sivMyApp.KeyControls("cTotalBalance")

 ctrlCurr = -300

'OR...Change a control directly

 sivMyApp.KeyControls("cTotalBalance") = -300

Example (Visual Basic 2005 Client)

'Set a control object variable

'to point to a control in a screen's Controls collection

 Dim ctrlCurr As SIVControl

 ctrlCurr = sivMyApp.KeyControls("cTotalBalance")

 ctrlCurr.Value = -300

'OR...Change a control directly

 sivMyApp.KeyControls("cTotalBalance").Value = -300

38 Object Model Reference Guide

Label Control (SIVControl Object)
Refers to the standard Visual Basic Label control.

Applies To

SIVControl object

Syntax

Object.(“Label Name”)

The Label control syntax has these parts:

Part Description

object An instance of SIVApplication.

Label Name Required string. Corresponds to the name of a Label control exposed by

the SIVApplication object.

Remarks

If you set the Value property of an instance of an SIVControl object that represents a label to some

string value, then you set the lLabel’s Caption (since Caption is the default property of the standard

Visual Basic Label control). As with all SIVControl objects, you can perform this manipulation either by

setting the Value property of the SIVControl instance that holds the Label, or you can implicitly refer to

the Value by simply referring to the SIVControl instance itself (see examples below).

You can also manipulate the Label’s other standard Visual Basic properties through the Microsoft

Dynamics SL Object Model by using the SIVControl instance’s Properties collection of SIVProperty

objects (see examples).

Possible Exceptions

None

See Also

SIVControl Object

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication
'Following are three different ways
'to manipulate a Label control on
'the application screen:

'this way --

Dim sivctrlLblBalance As SIVControl

Set sivctrlLblBalance = sivMyApp.Controls("lblBalance")

sivctrlLblBalance = "Balance"

sivctrlLblBalance.Properties.Item("BackColor") = vbRed

'or this way --

sivMyApp.Controls("lblBalance") = "Balance"

sivMyApp.Controls("lblBalance").Properties.Item("BackColor") = vbRed

'or this way --

sivMyApp.Controls("lblBalance").Value = "Balance"

sivMyApp.Controls("lblBalance").Properties.Item("BackColor") = vbRed

 Reference 39

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication

 'Following are two different ways

 'to manipulate a Label control on

 'the application screen:

 'this way --

 Dim sivctrlLblBalance As SIVControl

 sivctrlLblBalance = sivMyApp.Controls("lblBalance")

 sivctrlLblBalance.Value = "Balance"

 sivctrlLblBalance.Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

 'or this way --

 sivMyApp.Controls("lblBalance").Value = "Balance"

 sivMyApp.Controls("lblBalance").Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

40 Object Model Reference Guide

Last Method
Navigates to the last record for a specified entity.

Applies To

SIVApplication

Syntax

object.Last Entity

The Last method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data

entities. (Note: This is the Microsoft Dynamics SL data level.) See

remarks below.

RetVal A value of type sivRecordFound. Corresponds to one of the values

described below under the Returns section.

Returns

One of the two following values:

 sivRecFndNotFound – 1 — Means that no record was located upon execution of the Last method.

 sivRecFndFound - 2 — Means that a record was successfully located upon execution of the Last

method.

Remarks

Navigates to the last record of the entity specified by Entity for the SIVApplication object. You can

obtain the Entity string for a particular set of controls by getting the Level property from the Properties

collection of one of the controls.

If the current record was already the last record in Entity, the Last method always returns

sivRecFndFound even if it is already at the last record. The Last method returns sivRecFndNotFound

only if there are no entity records at all.

The Last method is equivalent to the user action of clicking the Last navigation button on the toolbar.

If the Last method is successful (return value was sivRecFndFound) and the SIVApplication object is

visible to the user, then the new record’s contents display in the application screen on the user’s

desktop.

The Last method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all processing caused by the call to this

method, whether the processing comes from the core Microsoft Dynamics SL kernel, the original

application, or any customization of the application.

Possible Exceptions

 7525 — Invalid entity string

 7530 — Last method is disabled for this entity

 Reference 41

Example (Visual Basic 6.0 Client)

'Assumes sivMyApp is an already-instantiated
'SIVApplication object

On Error GoTo NAVIGATE_ERROR

Dim sivrfResult As sivRecordFound

sivrfResult = sivMyApp.Last("Batch")

If sivrfResult = sivRecFndNotFound Then

 MsgBox "Navigate to a new Record"

End If

Exit Sub

NAVIGATE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7525

 MsgBox "Entity 'Batch' does not exist"

 Resume Next

 Case 7530

 MsgBox "LAST not permitted here"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

Example (Visual Basic 2005 Client)
'Assumes sivMyApp is an already-instantiated

'SIVApplication object

Dim sivrfResult As sivRecordFound

Try

 sivrfResult = sivMyApp.Last("Batch")

 If sivrfResult = sivRecordFound.sivRecFndNotFound Then

 MsgBox("Navigate to a new Record")

 End If

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7525

 MsgBox("Entity ’Batch’ does not exist")

 Case 7530

 MsgBox("LAST not permitted here")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

42 Object Model Reference Guide

Level Property (SIVProperty Object)
A String representing the entity name (Microsoft Dynamics SL data level) of a control in an

SIVApplication object.

Applies To

SIVProperty object

Syntax

Properties(“Level”)

where Properties represents an instance of SIVProperties.

Remarks

The Level property is display only.

It represents the Microsoft Dynamics SL data entity (or Microsoft Dynamics SL data level) to which a

control on an SIVApplication screen belongs.

You need to know the Level names of controls on a Microsoft Dynamics SL application screen in order

to navigate and manipulate the various data entities with such SIVApplication methods as Delete,

First, Last, New, Next, and Previous, because the Entity string is a required argument to these

methods. You can use an SIVControl’s Level property to determine the Entity name of a particular

control’s data level (see the examples below).

Note: Though Microsoft Dynamics SL data entity levels have traditionally been represented by

integers, starting with Level 0 and proceeding upward, the Object Model uses the actual level name

from the update control instead of the level number. For methods in the object model that deal with

levels (for instance, new, delete, first, last, next, and previous) you must use the string value returned

by the Level property of a control. The Object Model provides the LevelNumber property for reference,

but you cannot use it as the level parameter in one of those methods. Using the string value will make

it easier to debug your code because you will not have to keep track of which number corresponds to

the batch, document or detail level on the screen.

The word Level is strictly reserved to the context of this property. It is not used anywhere else in the

Microsoft Dynamics SL Object Model.

Possible Exceptions

None

See Also

Delete Method, GetEntityStatus Method, New Method, Next Method, SIVControl Object, SIVControls

Collection, SIVProperty Object, LevelNumber Property (SIVProperty Object)

Example (Visual Basic 6.0 Client)

'Set a control object variable
'to point to a control in a screen's Controls
'collection

Dim ctrlCurr As SIVControl

Set ctrlCurr = sivMyApp.Controls("cTotalBalance")

'Get the Level of that control's Entity

Dim strLevel as String

strLevel = ctrlCurr.Properties.Item("Level")

 Reference 43

Example (Visual Basic 2005 Client)

'Set a control object variable
'to point to a control in a screen's Controls
'collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivMyApp.Controls("cTotalBalance")

'Get the Level of that control's Entity

Dim strLevel as String

strLevel = ctrlCurr.Properties("Level").Value

44 Object Model Reference Guide

LevelNumber Property (SIVProperty Object)
An integer representing the entity level (Microsoft Dynamics SL data level) of a control in an

SIVApplication object.

Applies To

SIVProperty object

Syntax

Properties(“LevelNumber”)

where Properties represents an instance of SIVProperties.

Remarks

The LevelNumber property is display only.

It represents the Microsoft Dynamics SL data entity (or data level) to which a control on an

SIVApplication screen belongs.

This integer cannot be used when specifying an entity as a parameter for the First, Next, Previous,

Last, New and Delete methods of the SIVApplication object. The level property that returns a string

needs to be used as a parameter value for those functions.

See Also

 Delete Method, GetEntityStatus Method, New Method, Next Method, SIVControl Object, SIVControls

Collection, SIVProperty Object, LevelNumber Property (SIVProperty Object)

Example (Visual Basic 6.0 Client)

'Set a control object variable

'to point to a control in a screen's Controls

'collection

Dim ctrlCurr As SIVControl

Set ctrlCurr = sivMyApp.Controls("cTotalBalance")

'Get the Level of that control's Entity

Dim LevelNumber as Integer

LevelNumber = ctrlCurr.Properties.Item("LevelNumber")

Example (Visual Basic 2005 client)

'Set a control object variable

'to point to a control in a screen's Controls

'collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivMyApp.Controls("cTotalBalance")

'Get the Level of that control's Entity

Dim LevelNumber as Integer

LevelNumber = ctrlCurr.Properties("LevelNumber").Value

 Reference 45

Login Method
Sets a database context for the automation server. When this function returns without exceptions, the

automation client is logged on to a company and ready to start an application or call other methods on

the toolbar.

Applies To

SIVToolbar

Syntax

object.Login SystemDatabaseServerName, SystemDatabaseName, CompanyID, UserID, Password

The Login method syntax has these parts:

Part Description

object An instance of SIVToolbar.

SystemDatabase

ServerName

Required. String value indicating name of database server where the

target Microsoft Dynamics SL database resides.

SystemDatabase

Name

Required. String value giving name of target system Microsoft Dynamics

SL database.

CompanyID Required. String parameter giving the company ID that the session will

use.

UserID Required for SQL Authentication. Microsoft Dynamics SL user ID to use

during this session with the Microsoft Dynamics SL database. This

parameter is ignored if Windows Authentication is being utilized.

Password Required for SQL Authentication. Microsoft Dynamics SL password for

the user ID. This parameter is ignored if Windows Authentication is

being utilized.

Remarks

This method cannot be called if the automation client is already logged on to a company.

This method must always be called at the beginning of an automation session, even if the interactive

user is already logged on. If this logon differs from the one the interactive user is using, an exception is

raised, because Microsoft Dynamics SL only supports one login context (that is, user ID and company

ID) per desktop. In general, the first user to log on (whether the interactive user or the automation

client) sets the context. Subsequent concurrent logins must use the same context, or they will receive

an error.

To maintain system security, the interactive user must always log on manually, regardless of whether

the automation client is already logged on.

This method does not enable any menus on the toolbar application as the interactive login would. This

ensures that the interactive user has to log on even if the automation client is already logged on.

The Login method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

You might wish to create a unique user ID that only an automation client on a workstation uses and

then give that user ID access rights that are sufficient for carrying out the tasks that the automation

client needs to perform.

46 Object Model Reference Guide

Use of Windows Authentication vs. SQL Authentication

If the Microsoft Dynamics SL installation has been configured to use Windows Authentication for user

logons, the user ID and password are ignored by the Login method. For SQL Server Authentication, the

user ID and password are required and should be passed to this method.

Possible Exceptions

 7500 — Login Error: Already logged in

 7501 — Login Error: System Database Name is Greater than 20 Characters

 7502 — Login Error: Incorrect System Database Server Name or System Database Name

 7503 — Login Error: Incorrect Company ID, User ID, or Password

 7504 — Login Error: System Database Does Not Exist

 7505 — Login Error: Interactive User id Different from Client Login

See Also

Logout Method

Example (Visual Basic 6.0 Client)

Dim sivtbCurrent As New SIVToolbar
On Error GoTo LOGIN_ERR
sivtbCurrent.Login "CHOMPER", "MSINTL", _
 "NWIND", "NDavolio", "yowsa"

Exit Sub

LOGIN_ERR:

Select Case Err.Number - vbobjecterror

 Case 7500 'Already logged in

 Case 7501 'System Database Name > 20 Characters

 Case 7502 'Wrong System Database Server Database Name

 Case 7503 'Incorrect Company ID, User ID, or Password

 Case 7504 'System Database Does Not Exist

 Case 7505 'Interactive User ID <> Client Login

 Case Else

End Select

Example (Visual Basic 2005 Client)
Dim sivtbCurrent As New SIVToolbar

Try

 sivtbCurrent.Login("CHOMPER", "MSINTL", "NWIND", "NDavolio", "yowsa")

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7500 'Already logged in

 Case 7501 'System Database Name > 20 Characters

 Case 7502 'Wrong System Database Server Database Name

 Case 7503 'Incorrect Company ID, User ID, or Password

 Case 7504 'System Database Does Not Exist

 Case 7505 'Interactive User ID <> Client Login

 Case Else

 Reference 47

 MsgBox(ex.Message, MsgBoxStyle.Exclamation,

String.Format("{0} Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

48 Object Model Reference Guide

Logout Method
Logs off the automation client from the company.

Applies To

SIVToolbar object

Syntax

object.Logout

The Logout method syntax has these parts:

Part Description

object An instance of SIVToolbar.

Remarks

After this method completes, the Toolbar object does not have a database context. Therefore, no

applications can be started until a successful login has been completed again.

If any applications are open when the Logout method is called, an exception is raised.

The Logout method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

Possible Exceptions

7507 — Logout Error: Applications are still open

Example (Visual Basic 6.0 Client)

On Error GoTo LOGOUT_ERR
sivToolbar.Logout
Exit Sub

LOGOUT_ERR:

Select Case Err.Number

 Case 7507

 MsgBox "Can't Log out. Applications are still open."

 Case Else

 MsgBox "Unexpected Error"

End Select

Resume Next

Example (Visual Basic 2005 Client)
Try

 sivToolbar.Logout()

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Reference 49

 Select Case lErrNumber

 Case 7507

 MsgBox("Can't Log out. Applications are still open.")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

 Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Exception", ex.Source))

 End Try

50 Object Model Reference Guide

Message Event
Notifies the automation client of any non-fatal exceptions that the interactive user would see in the

form of message boxes and allows the automation client to choose a response.

Applies To

SIVApplication

Syntax (Visual Basic 6.0 Client)

Private Sub Object_Message(ByVal MessageNumber As Integer, ByVal MessageText As String,

ByVal MessageType As sivMessageType, ByRef MessageResponse As sivMessageResponse)

Syntax (Visual Basic 2005 Client)
 Private Sub sivApp_Message(_

 ByVal MessageNumber As Integer, _

 ByVal MessageText As String, _

 ByVal MessageType As

Microsoft.Dynamics.SL.ObjectModel.sivMessageType, _

 ByRef MessageResponse As

Microsoft.Dynamics.SL.ObjectModel.sivMessageResponse) _

 Handles sivApp.Message

The Message event syntax has these parts:

Part Description

object An instance of SIVApplication.

MessageNumber An integer value indicating the number of a Microsoft Dynamics SL

message as defined in the Messages.csv file.

MessageText A string value giving the corresponding message text from Messages.csv

for the Microsoft Dynamics SL message indicated by MessageNumber.

MessageType A value of type sivMessageType indicating the type of message box (the

set of standard message box buttons) that would display to the

interactive user, as indicated below in Settings.

MessageResponse A value of type sivMessageResponse indicating the action that the

system should take in response to this message. You can set this value

in the event procedure code of the Message event.

Settings

The settings for MessageType as are follows:

Constant Description

sivMsgOK Only OK is displayed.

sivMsgOKCancel OK and Cancel are displayed.

sivMsgAbortRetryIgnore Abort, Retry, and Ignore are displayed.

sivMsgYesNo Yes and No are displayed.

sivMsgYesNoCancel Yes, No, and Cancel are displayed.

sivMsgRetryCancel Retry and Cancel are displayed.

 Reference 51

The settings for MessageResponse are as follows:

Constant Description

sivMsgRspOK OK is pressed.

sivMsgRspCancel Cancel is pressed.

sivMsgRspAbort Abort is pressed.

sivMsgRspRetry Retry is pressed.

sivMsgRspIgnore Ignore is pressed.

sivMsgRspYes Yes is pressed.

sivMsgRspNo No is pressed.

sivMsgRspClose Close in the message box is pressed (like the user pressing ESC).

Remarks

The Message event notifies your automation client of non-fatal messages. The Message event stands

in for the display of non-fatal messages to the interactive user in the Microsoft Dynamics SL user

interface. In other words, the Message event fires in the automation client at every point in the

application that the interactive user would see a non-fatal message.

Whenever the Message event fires, the calling code that triggered the message event (typically an

attempt to set a control value or to call an SIVApplication method) also receives runtime error 2048

from the Object Model in addition to the firing of the Message event.

Fatal exceptions (that is, unrecoverable runtime errors) are raised as trappable errors to the

automation client by the Object Model and so are not handled by the Message event. Instead, the

calling code receives runtime error 2049 from the Object Model.

The purpose of the MessageNumber and MessageText parameters is to tell you which message has

occurred. All available MessageNumber and MessageText values for the Microsoft Dynamics SL

environment are furnished in the Messages.csv file, which is a comma-delimited text file residing in

the same directory as the Microsoft Dynamics SL executable. Any unidentified messages have a

MessageNumber with value Not found and a MessageText of “Message not found.”

The purpose of the MessageType parameter is to tell you which buttons are available for the

interactive user (in this case, the automation client) to press.

The purpose of the MessageResponse parameter is to let you communicate your chosen response (in

the form of one of the available buttons) back to the SIVApplication object. If you set

MessageResponse to an invalid value for the particular value of MessageType, then the value of

MessageResponse defaults to the default button and runtime error 7558 is raised.

If there is no code in the Message event procedure to set the value of MessageResponse, then the

system assumes the default response for that particular message.

The Message event is modal with respect to the automation object and client code. In other words, no

more code in your automation client runs until the Message event returns. In effect, this means that

the last instruction in the server application to run within the application before this event fired was

the instruction that caused the event. No other server code runs until you have had a chance to

respond to the message in the event procedure and the event procedure terminates.

The Message event is also not re-entrant with respect to the Microsoft Dynamics SL Object Model. This

means that you cannot perform any manipulation of the Microsoft Dynamics SL Object Model, such as

instantiating new object variables or calling their methods during the Message event’s event

procedure. In other words, the Message event procedure must finish completely before any further

Microsoft Dynamics SL Object Model processing happens in your code. If you attempt to re-enter the

Microsoft Dynamics SL Object Model from within the Message event procedure, you receive runtime

error 7554.

52 Object Model Reference Guide

Note:

 This event is not available to the internal automation client.

 This event is only triggered by the use of Microsoft Dynamics SL’s MessBox or Mess procedures. If

you use the standard Visual Basic MsgBox function, then your server code does not fire the

Message event. Furthermore, the user interface receives a modal message box, which requires

interactive user response. This message box may, however, not be visible to the user and so

effectively freezes your application. In addition, the use of MsgBox in a Microsoft SL SDK

application may crash the application. If you use the Microsoft Dynamics SL Code Inspector, it

warns you when you use MsgBox in your Microsoft SL SDK programs and offers to automatically

replace it with MessBox.

Possible Exceptions

 2048 — XXXX: Non-fatal Microsoft Dynamics SL exception (Note: This error does not occur in the

Message event procedure itself, but instead occurs in the calling routine after the message event

runs.)

 7554 — Cannot call back into the Object Model from within the Message event.

 7558 — Invalid message response for message number XXXX (Note: This error does not occur in

the Message event procedure itself, but instead occurs in the calling routine after the Message

event runs.)

Example

'This example first shows a calling routine that might fire

'the Message event, and then the Message event itself

'The following routine makes a call to the

'Object Model that triggers a recoverable exception

Private Sub DoSomething()

 'Assume that sivApp is an instantiated copy of

 'of SIVApplication

 sivApp.Controls("BigKey") = NonExistentValue

DoSomething_Exit:

 Exit Sub

DoSomething_Error:

 If Err.Source = "Solomon" Then

 Dim iErrNumber As Integer

 Dim iSolErr As Integer

 iErrNumber = Err.Number - vbObjectError

 Select Case iErrNumber

 Case 7558 'Message event procedure gave invalid response

 Reference 53

 Case 2048 'non-fatal exception

 '(Message event has just fired before this)

 iSolErr = Val(Err.Description)

 Select Case iSolErr

 Case 9 'Not found

 'fix problem or give up

 Resume Next

 Case 15 'value was too small

 'fix problem or give up

 Resume Next

 Case 19 'value was too large

 'fix problem or give up

 Resume Next

 End Select

 Case 2049 'fatal exception (no Message event)

 iSolErr = Val(Err.Description)

 'Perhaps react to iSolErr

 MsgBox "Fatal Error:" _

 & vbCRLF & Err.Description _

 & vbCRLF & "Application will terminate."

 'Clean up environment and exit

 Case 2050 'object model error

 MsgBox "Fatal internal object model Error:" _

 & vbCRLF & Err.Description _

 & vbCRLF & "Report to Microsoft tech support."

 'Clean up environment and exit

 'Cases for other object model-generated errors

 Case 7500 'etc...

 End Select

 Else

 'Non-object model error

 End If

End Sub

Private Sub sivMyApp_Message(ByVal MessageNumber As Integer, _

 ByVal MessageText As String, _

 ByVal MessageType As sivMessageType, _

 ByRef MessageResponse As _

 sivMessageResponse)

 On Error GoTo MESSAGE_ERROR:

 Select Case MessageType

 Case sivMsgOK

 sivMessageResponse = sivMsgRspOK

 Case sivMsgAbortRetryIgnore

 Select Case MessageNumber

 Case x

 MessageResponse = sivMsgRspRetry

 Case y

 MessageResponse = sivMsgRspIgnore

 Case Else

 MessageResponse = sivMsgRspAbort

 End Select

 Case sivMsgYesNo

 '....etc.

54 Object Model Reference Guide

 Case sivMsgYesNoCancel

 '....etc.

 Case sivMsgRetryCancel

 '....etc.

 End Select

EXIT_MESSAGE_EVENT:

 Exit Sub

MESSAGE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7554 'can't re-enter object model from Message event

 'you were trying to do something

 'with the Object Model, which is forbidden

 'here, because Message is non-re-entrant

 Resume Next

 Case Else

 MsgBox "Unexpected error #" & Err.Number & _

 ": " & Err.Description, "Message Event"

 Resume EXIT_MESSAGE_EVENT

 End Select

End Sub

 Reference 55

Name Property (SIVControl Object)
The name of an instance of an SIVControl object.

Applies To

SIVControl Object

Syntax

Object.Name
 Properties(“Name”)

The Name property syntax has these parts:

Part Description

object An instance of an SIVControl object.

Remarks

The Name property is display only.

You will not usually refer to the Name property specifically, except when trying to detect a particular

control when looping through the Controls collection, or in a situation where an unknown Control may

have been passed to a Sub or Function procedure.

Possible Exceptions

None

See Also

Controls Collection (SIVApplication Object), SIVControl Object

Example

'Using For...Each to Traverse the Controls collection and display

'the control name using the Name property of the SIVControl object

Dim ctrlCurr As SIVControl

For Each ctrlCurr in sivMyApp.Controls

 MsgBox ctrlCurr.Name

Next ctrlCurr

56 Object Model Reference Guide

Name Property (SIVProperty Object)
The name of an instance of a SIVProperty object.

Applies To

SIVProperty object

Syntax

Object.Name
 Properties(“Name”)

The Name property syntax has these parts:

Part Description

object An instance of a Property object.

Remarks

The Name property is also the same as the contents of the string-type key that you use to refer to a

control in the Properties collection.

The Name property is display only.

You will not usually refer to the Name property specifically, except when trying to detect a particular

property when looping through the Properties collection, or in a situation where an unknown Property

may have been passed to a Sub or Function procedure.

Possible Exceptions

None

See Also

Controls Collection (SIVApplication Object), Properties Collection (SIVControl Object), SIVControl Object,

SIVProperty Object

Example

'Assume that sivCtrlCurr is an
'instance of an SIVControl

Dim blnSupportsLobsterProperty As Boolean
Dim sivPropCurr As SIVProperty

For Each sivPropCurr In sivCtrlCurr.Properties.Item
 If sivPropCurr.Name = "Lobster" Then
 blnSupportsLobsterProperty = True
 Exit For
 End If
Next sivPropCurr

If blnSupportsLobsterProperty Then

 sivCtrlCurr.Properties.Item("Lobster").Value = True

End If

 Reference 57

New Method
Performs a New action for a specified entity and all its dependent entities on a particular screen.

Applies To

SIVApplication

Syntax

object.New Entity

The New method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data

entities. (Note: This is the Microsoft Dynamics SL data level.) See

remarks below.

Remarks

The New method is analogous to the interactive user clicking New or pressing CTRL+N.

When the New method executes successfully, then the controls bound to the specified Entity are set to

their default starting values, and so are all the controls bound to all entities that are dependent on the

specified Entity.

If the SIVApplication object is visible to the user, then the controls bound to the Entity and its

subentities display with their default initialization values on the screen.

The New method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

Possible Exceptions

 7524 — New method is disabled for the specified entity, either by the application or because of

access rights

 7525 — Invalid entity string

See Also

SIVApplication Object

Example (Visual Basic 6.0 Client)

'Assume that sivMyApp is an instance of
'SIVApplication

On Error GoTo NEW_ERROR

sivMyApp.New "Batch"

Exit Sub

NEW_ERROR:

Select Case Err.Number - vbObjectError

 Case 7524

 MsgBox "New method disabled"

 Resume Next

 Case 7525

58 Object Model Reference Guide

 MsgBox "Invalid entity 'Batch'"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

End Select

Example (Visual Basic 2005 Client)
'Assume that sivMyApp is an instance of

'SIVApplication

Try

 sivMyApp.[New]("Batch")

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7524

 MsgBox("New method disabled")

 Case 7525

 MsgBox("Invalid entity 'Batch'")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Reference 59

Next Method
Navigates to the next record for a specified entity.

Applies To

SIVApplication

Syntax

object.Next Entity

The Next method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data

entities. (Note: This is the Microsoft Dynamics SL data level.) See

remarks below.

RetVal A value of type sivRecordFound. Corresponds to one of the values

described below under the Returns section.

Returns

One of the two following values:

 sivRecFndNotFound – 1 — Means that no record was located upon execution of the Next method.

 sivRecFndFound - 2 — Means that a record was successfully located upon execution of the Next

method.

Remarks

Navigates to the next record of the entity specified by Entity for the SIVApplication object. You can

obtain the Entity string for a particular set of controls by getting the Level property from the Properties

collection of one of the controls.

If the current record was already the last record in Entity, then the record pointer changes to point to a

new record, the return value is sivRecFndNotFound, and no exception is generated.

The Next method is equivalent to the user action of clicking the Next navigation button on the toolbar.

If the Next method is successful (return value was sivRecFndFound) and the SIVApplication object is

visible to the user, then the new record’s contents display in the application screen on the user’s

desktop.

The Next method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

Possible Exceptions

 7525 — Invalid entity string

 7532 — Next method is disabled for this entity

Example (Visual Basic 6.0 Client)

'Assumes sivMyApp is an already-instantiated
'SIVApplication object
On Error GoTo NAVIGATE_ERROR

60 Object Model Reference Guide

Dim sivrfResult As sivRecordFound
sivrfResult = sivMyApp.Next ("Batch")
If sivrfResult = sivRecFndNotFound Then
 MsgBox "Navigated to a new Record"
End If

Exit Sub

NAVIGATE_ERROR:

Select Case Err.Number - vbObjectError

 Case 7525

 MsgBox "Invalid entity 'Batch'"

 Resume Next

 Case 7524

 MsgBox "Next method disabled"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

End Select

Example (Visual Basic 2005 Client)

'Assumes sivMyApp is an already-instantiated

'SIVApplication object

Dim sivrfResult As sivRecordFound

Try

 sivrfResult = sivMyApp.Next("Batch")

 If sivrfResult = sivRecordFound.sivRecFndNotFound Then

 MsgBox("Navigated to a new Record")

 End If

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains(“Solomon”) = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7525

 MsgBox("Invalid entity 'Batch'")

 Case 7524

 MsgBox("Next method disabled")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Reference 61

Notes/Attachments Icon (NoteButton Control)

Remarks

Not supported in this version of the Microsoft Dynamics SL Object Model.

62 Object Model Reference Guide

Previous Method
Navigates to the previous record for a specified entity.

Applies To

SIVApplication
 object.Previous Entity

The Previous method syntax has these parts:

Part Description

object An instance of SIVApplication.

Entity Required string. Corresponds to one of the SIVApplication object’s data

entities. (Note: this is the Microsoft Dynamics SL data level.) See

remarks below.

RetVal A value of type sivRecordFound. Corresponds to one of the values

described below under the Returns section.

Returns

One of the two following values:

 sivRecFndNotFound - 1 — Means that no record was located upon execution of the Previous

method.

 sivRecFndFound - 2 — Means that a record was successfully located upon execution of the

Previous method.

Remarks

Navigates to the previous record of the entity specified by Entity for the SIVApplication object. You can

obtain the Entity string for a particular set of controls by getting the Level property of one of the

controls.

If the current record was already the first record in Entity, then the record pointer changes to point to a

new record, the return value is sivRecFndNotFound, and no exception is generated.

The Previous method is equivalent to the user action of clicking the Previous navigation button on the

toolbar.

If the Previous method is successful (return value was sivRecFndFound) and the SIVApplication object

is visible to the user, then the new record’s contents display in the application screen on the user’s

desktop.

The Previous method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

 7525 — Invalid entity string

 7534 — Previous method (and other table navigation) is disabled for this entity

Example (Visual Basic 6.0 Client)

'Assumes sivMyApp is an already-instantiated
'SIVApplication object

On Error GoTo NAVIGATE_ERROR

 Reference 63

Dim sivrfResult As sivRecordFound
sivrfResult = sivMyApp.Previous("Batch")
If sivrfResult = sivRecFndNotFound Then
 MsgBox "Navigated to a new Record"
End If

Exit Sub

NAVIGATE_ERROR:

Select Case Err.Number - vbObjectError

 Case 7525

 MsgBox "Invalid entity 'Batch'"

 Resume Next

 Case 7534

 MsgBox "Previous method disabled"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

End Select

Example (Visual Basic 2005 Client)

'Assumes sivMyApp is an already-instantiated

'SIVApplication object

Dim sivrfResult As sivRecordFound

Try

 sivrfResult = sivMyApp.Previous("Batch")

 If sivrfResult = sivRecordFound.sivRecFndNotFound Then

 MsgBox("Navigated to a new Record")

 End If

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains(“Solomon”) = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7525

 MsgBox("Invalid entity ’Batch’")

 Case 7534

 MsgBox("Previous method disabled")

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

64 Object Model Reference Guide

Properties Collection (SIVControl Object)
Returns a reference to a collection of SIVProperty objects.

Applies To

SIVControl Object

Syntax

object.Properties

where object represents an instance of SIVControl.

Methods

Count method, Item method

Remarks

You can manipulate SIVProperty objects using the reference returned by the Properties property (see

the following examples).

Possible Exceptions

None

See Also

SIVControl Object

Example (Visual Basic 6.0 Client)

'Set a property object variable
'to point to a property in a SIVControl's Properties collection

Dim propCurr As SIVProperty

Set propCurr = currCtrl.Properties.Item("BackColor")

propCurr.Value = vbRed

'Change a control directly

sivMyApp.Controls("cTotalBalance").Properties.Item("BackColor") = vbRed

Example (Visual Basic 2005 Client)

'This example uses a constant from VBRUN.DLL. Dynamics SL

'provides an interop for VBRUN.DLL called Interop.VBRUN.DLL.

'This program requires a reference to this assembly to use

'the “vbRed” constant.

'Set a property object variable

'to point to a property in a SIVControl's Properties collection

Dim propCurr As SIVProperty

propCurr = currCtrl.Properties("BackColor")

propCurr.Value = VBRUN.ColorConstants.vbRed

'Change a control directly

sivMyApp.Controls("cTotalBalance").Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

 Reference 65

Quit Method
Causes either the toolbar or the Microsoft SL SDK application to shut down.

Applies To

SIVToolbar, SIVApplication

Syntax

object.Quit

The Quit method syntax has these parts:

Part Description

object An instance of SIVToolbar or SIVApplication.

Remarks: SIVToolbar

Calling the Quit method on the SIVToolbar object is equivalent to the user clicking the toolbar’s close

box (the box with the “X” in the upper right corner of the toolbar’s window) or choosing File | Exit from

the toolbar menu.

The SIVToolbar object must be logged off before its Quit method is called. This ensures that all

applications are closed before the toolbar is shut down (one of the requirements for the Logout

method is that all applications must be closed).

After the Quit method has been called, the Toolbar object is destroyed when its Dispose method is

called. The toolbar shuts down only after Quit has been called, and the toolbar object has been

destroyed.

If you destroy the instance of the SIVToolbar object but do not call the Quit method, the connection

between the toolbar and the automation client is broken, and the toolbar automatically becomes

visible to the interactive user.

If an automation client holds a valid reference to a visible instance of SIVToolbar, then the interactive

user will be unable to close it.

Remarks: SIVApplication

Calling the Quit method on the SIVApplication object is equivalent to the interactive user clicking Close

on the toolbar.

After the Quit method has been called, the SIVApplication object will be destroyed by calling its

Dispose method. The application only shuts down after Quit has been called and the SIVApplication

object has been destroyed.

If you destroy the instance of the SIVApplication object but do not call the Quit method, the connection

between the application and the automation client is broken, and the application automatically

becomes visible to the interactive user.

Any exceptions raised during the shutdown of the application, such as prompts to save changes or

warnings about incorrect data settings, prevent the application from shutting down.

If an automation client holds a valid reference to a visible instance of SIVApplication, then the

interactive user is unable to close it.

Remarks: Common

The Quit method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

66 Object Model Reference Guide

Possible Exceptions

7522 – Automation client is not logged out.

Example (Visual Basic 6.0 Client)

'following code assumes that sivtbCurrent
'is a SIVToolbar object that has already
'successfully logged in

 On Error GoTo QUIT_ERR

 sivToolbar.Quit

 Set SIVToolbar = Nothing

 Exit Sub

QUIT_ERR:

 Select Case Err.Number - vbObjectError

 Case 7522

 End Select

Example (Visual Basic 2005 Client)

'following code assumes that sivToolbar

'is a SIVToolbar object that has already

'successfully logged in

Try

 sivToolbar.Quit()

 sivToolbar.Dispose()

 sivToolbar = Nothing

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7522

 MsgBox(“Automation client is not logged out”)

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Reference 67

Relative Date Dialog

Remarks

Not supported in this version of the Microsoft Dynamics SL Object Model.

68 Object Model Reference Guide

SAFCheck Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFCheck control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFCheck Name”)

The SAFCheck control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFCheck Name Required string. Corresponds to the name of an SAFCheck control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFCheck control has a Value property that can

be either True for a checked box or False for an unchecked box. Note that SAFCheck only supports

these two values as opposed to the standard Visual Basic CheckBox control’s vbChecked,

vbUnChecked, and vbGrayed.

Note: Value can only be True or False, regardless of the TrueText or FalseText setting of the control.

As with all SIVControl objects, you can perform this manipulation either by setting the Value property of

the SIVControl instance that holds the SAFCheck, or you can implicitly refer to the Value by simply

referring to the SIVControl instance itself (see the examples below).

You can also manipulate the SAFCheck’s Microsoft Dynamics SL and standard Visual Basic properties

through the Object Model by using the SIVControl instance’s Properties collection of SIVProperty

objects (see examples).

For further information about the behavior of the SAFCheck control, see Microsoft SL SDK

documentation.

Possible Exceptions

None

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication
'Following are three different ways
'to manipulate a SAFCheck control on
'the application screen:

'this way --

Dim sivctrlc1099 As SIVControl

Set sivctrlc1099 = sivMyApp.Controls("c1099")

sivctrlc1099 = True

sivctrlc1099.Properties.Item("Font.Bold") = True

 Reference 69

'or this way --

sivMyApp.Controls("c1099") = True

sivMyApp.Controls("c1099").Properties.Item("Font.Bold") = True

'or this way --

sivMyApp.Controls("c1099").Value = True

sivMyApp.Controls("c1099").Properties.Item("Font.Bold") = True

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication

'Following are two different ways

'to manipulate a SAFCheck control on

'the application screen:

'this way --

Dim sivctrlc1099 As SIVControl

sivctrlc1099 = sivMyApp.Controls("c1099")

sivctrlc1099.Value = True

sivctrlc1099.Properties("Font").Value.Bold = True

'or this way --

sivMyApp.Controls("c1099").Value = True

sivMyApp.Controls("c1099").Properties("Font").Value.Bold = True

70 Object Model Reference Guide

SAFCombo Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFCombo control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFCombo Name”)

The SAFCombo control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFCombo Name Required string. Corresponds to the name of an SAFCombo control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFCombo control has a Value property that

corresponds to the current contents of the selected list item text in the ComboBox. You cannot add

text that does not already exist as an option in the ComboBox list. Beware that SAFCombo lists do not

generally correspond to the exact contents of underlying data fields.

If a Microsoft Dynamics SL customization has disabled a list entry, then you will not be able to set the

Value property to that list entry and an error is raised. If you attempt to set an SAFCombo list entry that

is disabled, then you receive runtime error 7537.

As with all SIVControl objects, you can perform this manipulation by setting the Value property of the

SIVControl instance that holds the SAFCombo, or you can implicitly refer to the Value by simply

referring to the SIVControl instance itself (see the examples below).

Note about customized list values: Since you must refer to the list values available to the interactive

user in order to manipulate an SAFCombo’s current setting, you might be concerned about what will

happen to your client automation code if someone customizes the Microsoft Dynamics SL application

to display different list values. Fortunately, the Microsoft Dynamics SL Object Model is intelligent

enough to check underlying, un-customized values of SAFCombo list items as well as current, visible

values. For example, consider an SAFCombo named cOrdType with standard list values “Credit

Memo,” “Debit Memo,” “Invoice,” and “Quote.” You have written automation client code that changes

the value of cOrdType to “Invoice” in a particular situation. If someone customizes their Microsoft

Dynamics SL installation so that the list values now display as “Nota de Credito,” “Nota de Debito,”

“Factura,” and “Cotizacion,” your original automation code still works with “Invoice” because the

Microsoft Dynamics SL Object Model examines both the customized and the original values of the list

whenever you attempt to assign a list value in your automation client code.

The List property is display only and consists of a delimited string that contains the entries visible to

the user in the combo box, as well as the underlying values that are stored in the data for each visible

list entry. The format of the string is Data Value;Visible Value[, Data Value;Visible Value[...]]. In the

previous example for cOrdType, the original uncustomized list would look like: “C;Credit Memo,D;Debit

Memo,I;Invoice,Q;Quote”.

You can also manipulate the SAFCombo’s Microsoft Dynamics SL and standard Visual Basic properties

through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s Properties

collection of SIVProperty objects (see examples).

For further information about the behavior of the SAFCombo control, see Microsoft SL SDK

documentation.

 Reference 71

Possible Exceptions

 7537 — Specified list value is disabled

 7538 — Specified list value does not exist

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication

'Following are three different ways
'to manipulate a SAFCombo control on
'the application screen:

'this way --

Dim sivctrlcEmpType As SIVControl

Set sivctrlcEmpType = sivMyApp.Controls("cEmpType")

sivctrlcEmpType = "Exempt"

'or this way --

sivMyApp.Controls("cEmpType") = "Exempt"

'or this way --

sivMyApp.Controls("cEmpType").Value = "Exempt"

'NOTE: The value "Exempt" will work even if the screen

'has been customized to use a different string for the

'"Exempt" option.

Example (Visual Basic 2005 Client)

 'Following code assumes that sivMyApp

 'is an instance of SIVApplication

 'Following are two different ways

 'to manipulate a SAFCombo control on

 'the application screen:

 'this way --

 Dim sivctrlcEmpType As SIVControl

 sivctrlcEmpType = sivMyApp.Controls("cEmpType")

 sivctrlcEmpType.Value = "Exempt"

 'or this way --

 sivMyApp.Controls("cEmpType").Value = "Exempt"

 'NOTE: The value "Exempt" will work even if the screen

 'has been customized to use a different string for the

 '"Exempt" option.

72 Object Model Reference Guide

SAFContainer Control

Remarks

Not supported in this version of the Microsoft Dynamics SL Object Model.

 Reference 73

SAFFloat Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFFloat control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFFloat Name”)

The SAFFloat control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFFloat Name Required string. Corresponds to the name of an SAFFloat control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFFloat control has a Value property that

corresponds to the current contents of the control as seen by the interactive user.

You can assign to the Value property any numeric type compatible with a Double type, or you can

assign a String Variant type. If it is a string, however, then the string cannot contain any currency

symbols or commas and, if it contains a decimal point, then the decimal point must be US-format

decimal float (“.”). In other words, the only legal characters are the digits, the positive and negative

signs (“+” and “-”), and the US-format decimal point. Attempting to assign other characters will

generate an exception.

The Value property’s return type is always a Variant that contains a Double.

As with all SIVControl objects, you can manipulate this value either by setting the Value property of the

SIVControl instance that holds the SAFFloat, or you can implicitly refer to the Value by simply referring

to the SIVControl instance itself (see examples below).

You can also manipulate the SAFFloat’s Microsoft Dynamics SL and standard Visual Basic properties

through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s Properties

collection of SIVProperty objects (see examples).

For further details about the behavior of the SAFFloat control, see the Microsoft SL SDK

documentation.

Possible Exceptions

 7539 — Incorrect data format for SAFFloat control

 7561 — Attempt to set number of decimal places to be greater than the number of decimal places

allowed by the control

See Also

SIVControl Object, Value Property (SIVControl Object)

74 Object Model Reference Guide

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication.

'Following are three different ways
'to manipulate a SAFFloat control on
'the application screen:

'this way (notice use of string) --

Dim sivctrlcTotal As SIVControl

Set sivctrlcTotal = sivMyApp.Controls("cTotal")

sivctrlcTotal = "123456789.32"

'or this way (notice use of numeric literal) --

sivMyApp.Controls("cTotal") = 123456789.32

'or this way --

sivMyApp.Controls("cTotal").Value = 123456789.32

'NOTE: each of the following examples would raise an exception,

'because the numeric strings are incorrectly formatted:

sivctrlcTotal = "123,456,789.32" 'must NOT use thousands separator

sivctrlcTotal = "123456789,32" 'MUST use US decimal point

sivctrlcTotal = "$123456789.32" 'must NOT use currency symbol

sivctrlcTotal = "BAL=123456789.32" 'must NOT use non-numeric chars

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication.

'Following are two different ways

'to manipulate a SAFFloat control on

'the application screen:

'this way (notice use of string) --

Dim sivctrlcTotal As SIVControl

sivctrlcTotal = sivMyApp.Controls("cTotal")

sivctrlcTotal.Value = "123456789.32"

'or this way (notice use of numeric literal) --

sivMyApp.Controls("cTotal").Value = 123456789.32

'NOTE: each of the following examples would raise an exception,

'because the numeric strings are incorrectly formatted:

sivctrlcTotal.Value = "123,456,789.32" 'must NOT use thousands separator

sivctrlcTotal.Value = "123456789,32" 'MUST use US decimal point

sivctrlcTotal.Value = "$123456789.32" 'must NOT use currency symbol

sivctrlcTotal.Value = "BAL=123456789.32" 'must NOT use non-numeric chars

 Reference 75

SAFGrid Control

Remarks

Not available through the Microsoft Dynamics SL Object Model.

However, it certainly is possible to access data exposed in grids on Microsoft SL SDK application

screens.

76 Object Model Reference Guide

SAFInteger Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFInteger control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFInteger Name”)

The SAFInteger control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFInteger Name Required string. Corresponds to the name of an SAFInteger control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFInteger control has a Value property that

corresponds to the current contents of the control as seen by the interactive user.

You can assign to the Value property any numeric type compatible with an Integer type, or you can

assign a String Variant type. If it is a string, however, then the string cannot contain any currency

symbols, commas or decimal points. In other words, the only legal characters are the digits and

positive and negative signs (“+” and “-”). Attempting to assign other characters will generate an

exception. Attempting to assign numeric types or values that do not fit in the range of an integer also

will generate an exception.

The Value property’s return type is always a Variant that contains an integer.

As with all SIVControl objects, you can manipulate this value either by setting the Value property of the

SIVControl instance that holds the SAFInteger, or you can implicitly refer to the Value by simply

referring to the SIVControl instance itself (see examples below).

You can also manipulate the SAFInteger’s Microsoft Dynamics SL and standard Visual Basic properties

through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s Properties

collection of SIVProperty objects (see examples).

For further particulars about the behavior of the SAFInteger control, see the Microsoft SL SDK

documentation.

Possible Exceptions

7540 — Incorrect data format for SAFInteger control

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication.

'Following are three different ways
'to manipulate a SAFInteger control on
'the application screen:

'this way (notice use of string) --

Dim sivctrlcCount As SIVControl

 Reference 77

Set sivctrlcCount = sivMyApp.Controls("cCount")

sivctrlcCount = "12345"

'or this way (notice use of numeric literal) --

sivMyApp.Controls("cCount") = 12345

'or this way --

sivMyApp.Controls("cCount").Value = 12345

'NOTE: each of the following examples would raise an exception,

'because the numeric strings are incorrectly formatted or outside

'the range allowed for an Integer:

sivctrlcCount = "12,345" 'must NOT use thousands separator

sivctrlcTotal = "12345.32" 'MUST NOT use decimals of any kind

sivctrlcTotal = "$12345" 'must NOT use currency symbol

sivctrlcTotal = "BAL=12345" 'must NOT use non-numeric chars

sivctrlcTotal = "123456789" 'must NOT use incompatible numeric types

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp

'is an instance of SIVApplication.

'Following are two different ways

'to manipulate a SAFInteger control on

'the application screen:

'this way (notice use of string) --

Dim sivctrlcCount As SIVControl

sivctrlcCount = sivMyApp.Controls("ccycle")

sivctrlcCount.Value = "12345"

'or this way (notice use of numeric literal) --

sivMyApp.Controls("ccycle").Value = 12345

'NOTE: each of the following examples would raise an exception,

'because the numeric strings are incorrectly formatted or outside

'the range allowed for an Integer:

sivctrlcCount.Value = "12,345" 'must NOT use thousands separator

sivctrlcCount.Value = "12345.32" 'MUST NOT use decimals of any kind

sivctrlcCount.Value = "$12345" 'must NOT use currency symbol

sivctrlcCount.Value = "BAL=12345" 'must NOT use non-numeric chars

sivctrlcCount.Value = 123456789" 'must NOT use incompatible numeric types

78 Object Model Reference Guide

SAFMaskedText Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFMaskedText control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFMaskedText Name”)

The SAFMaskedText control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFMaskedText

Name

Required string. Corresponds to the name of an SAFMaskedText control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFMaskedText control has a Value property

that corresponds to the current contents of the control as seen by the interactive user.

The Value property of an SAFMaskedText is a Variant that contains a string. If the contents of the

string that you attempt to assign to the SAFMaskedText do not agree with the Mask property of the

SAFMaskedText control, then an exception will be generated. When you assign a character string to

the Mask, then you must include in the string non-significant formatting characters that are part of the

Mask, such as dashes or slashes.

You can also manipulate the SAFMaskedText’s Microsoft Dynamics SL and standard Visual Basic

properties through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s

Properties collection of SIVProperty objects (see examples).

For further particulars about the behavior of the SAFMaskedText control, see the Microsoft SL SDK

documentation.

Possible Exceptions

 7541 — Data does not match mask

 7553 — Data is too long to fit in field

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication.
'Assume a SAFMaskedText control for Social Security Number.
'Its mask would be "999-99-9999"

'Note that when assigning characters to fit the mask,

'it is not necessary to insert formatting characters

'(in this case, the dashes "-").

'Following are three different ways

'to manipulate a SAFMaskedText control on

'the application screen:

'this way --

Dim sivctrlcSSN As SIVControl

 Reference 79

Set sivctrlcSSN = sivMyApp.Controls("cSSN")

sivctrlcSSN = "596708972"

'or this way --

sivMyApp.Controls("cSSN") = "596708972"

'or this way --

sivMyApp.Controls("cSSN").Value = "596708972"

'NOTE: each of the following examples would raise an exception,

'because the numeric strings are incorrectly formatted or outside

'the range allowed for an Integer:

sivctrlcSSN = "5967089723" 'too long for Mask

sivctrlcSSN = "596AA8972" 'alpha characters where Mask is numeric

Example (Visual Basic 2005 Client)
 'Following code assumes that sivMyApp

 'is an instance of SIVApplication.

 'Assume a SAFMaskedText control for Social Security Number.

 'Its mask would be "999-99-9999"

 'Note that when assigning characters to fit the mask,

 'it is not necessary to insert formatting characters

 '(in this case, the dashes "-").

 'Following are two different ways

 'to manipulate a SAFMaskedText control on

 'the application screen:

 'this way --

 Dim sivctrlcSSN As SIVControl

 sivctrlcSSN = sivMyApp.Controls("cSSN")

 sivctrlcSSN.Value = "596708972"

 'or this way --

 sivMyApp.Controls("cSSN").Value = "596708972"

 'NOTE: each of the following examples would raise an exception,

 'because the numeric strings are incorrectly formatted or outside

 'the range allowed for an Integer:

 sivctrlcSSN.Value = "5967089723" 'too long for Mask

 sivctrlcSSN.Value = "596AA8972" 'aplha characters where Mask is numeric

80 Object Model Reference Guide

SAFOption Control (SIVControl Object)
Refers to the Microsoft Dynamics SL SAFOption control.

Applies To

Controls collection of SIVApplication object

Syntax

Object.Controls.(“SAFOption Name”)

The SAFOption control syntax has these parts:

Part Description

object An instance of SIVApplication.

SAFOption Name Required string. Corresponds to the name of an SAFOption control

exposed by the SIVApplication object.

Remarks

The instance of an SIVControl object that contains an SAFOption control has a Value property that can

be either True for a selected SAFOption or False for an unselected SAFOption.

Note: Value can only be True or False, regardless of the TrueText or FalseText setting of the control.

SAFOption controls are commonly found in control arrays.

When you need to refer to an SIVControl that points to a member of a control array in the underlying

application, then you must use the control array index as part of the index element that you pass as an

argument to the Controls collection. For example, you would refer to element 2 of a control array

named optCreditCard of SAFOption controls as follows:

sivMyApp.Controls(“optCreditCard(2)”)

As with all SIVControl objects, you can perform this manipulation either by setting the Value property of

the SIVControl instance that holds the SAFOption, or you can implicitly refer to the Value by simply

referring to the SIVControl instance itself (see the examples below).

You can also manipulate the SAFOption’s Microsoft Dynamics SL and standard Visual Basic properties

through the Microsoft Dynamics SL Object Model by using the SIVControl instance’s Properties

collection of SIVProperty objects (see examples).

For further particulars about the behavior of the SAFOption control, see the Microsoft SL SDK

documentation.

Possible Exceptions

None

See Also

SIVControl Object, Value Property (SIVControl Object)

Example (Visual Basic 6.0 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication
'Following are three different ways
'to manipulate a SAFOption control on
'the application screen (note that this
'control is element 2 of a control array):

'this way --

Dim sivctrlcCreditType2 As SIVControl

 Reference 81

Set sivctrlcCreditType2 = sivMyApp.Controls("cCreditType(2)")

sivctrlcCreditType2 = True

'or this way --

sivMyApp.Controls("cCreditType(2)") = True

'or this way --

sivMyApp.Controls("cCreditType(2)").Value = True

Example (Visual Basic 2005 Client)

'Following code assumes that sivMyApp
'is an instance of SIVApplication
'Following are two different ways
'to manipulate a SAFOption control on
'the application screen (note that this
'control is element 2 of a control array):

'this way --

Dim sivctrlcCreditType2 As SIVControl

Set sivctrlcCreditType2 = sivMyApp.Controls("cCreditType(2)")

sivctrlcCreditType2.Value = True

'or this way --

sivMyApp.Controls("cCreditType(2)").Value = True

82 Object Model Reference Guide

SAFUpdate Control

Remarks

Not available through the Microsoft Dynamics SL Object Model.

 Reference 83

Save Method
Saves all the data in the current screen.

Applies To

SIVApplication

Syntax

object.Save

The Save method syntax has these parts:

Part Description

object An instance of SIVApplication.

Remarks

When you call the Save method, you perform the same action as interactive users perform when they

click the Save button on the toolbar or key CTRL+S.

The Save method causes the contents of all bound controls on the application screen to be written to

their underlying data fields.

It is possible that the underlying application or a customization may have disabled the Save button, or

the current user ID may not have rights to save for the current application. In such cases, runtime

error 7562 occurs.

Although there are no other specific runtime error codes or messages related to Save method

exceptions, the attempt to save a screen’s information can generate many validation exceptions due

to the fact that the data is not ready to be saved.

You should trap for such exceptions, either in the SIVApplication’s Message event procedure, or as

runtime errors in the procedure where you call the Save method.

In the example, note the use of a Public flag variable, gblnSaving, that indicates whether the system is

in the midst of a Save operation. Other code, such as that in the Message event procedure, can check

the flag to modify its behavior.

The Save method, as well as all other methods and property set operations throughout the Microsoft

Dynamics SL Object Model, is synchronous with respect to the automation client. That is, control does

not return to the automation client until the completion of all Microsoft Dynamics SL processing

caused by the call to this method, whether the processing comes from the core Microsoft Dynamics SL

kernel, the original application, or any customization of the application.

Possible Exceptions

7562 — Save may be disabled, either by the application or because of access rights

Example (Visual Basic 6.0 Client)

'following code assumes that sivMyApp
'is an instance of SIVApplication.
Public gblnSaving As Boolean

Private Sub SaveMe()

 On Error GoTo SAVE_ERROR

 gblnSaving = True

 sivMyApp.Save

SAVE_EXIT:

 gblnSaving = False

 Exit Sub

84 Object Model Reference Guide

SAVE_ERROR:

 MsgBox "Unable to save. Error #" & Err.Number & _

 ": " & Err.Description

 Resume SAVE_EXIT

End Sub

'....And in the Message Event procedure

Private Sub sivMyApp_Message(ByVal MessageNumber As Integer, _

ByVal MessageText As String, _

ByVal MessageType As sivMessageType, _

ByRef MessageResponse As sivMessageResponse)

Select Case MessageType

 Case sivMsgOK

 sivMessageResponse = sivMsgRspOK

 Case sivMsgAbortRetryIgnore

 Select Case MessageNumber

 Case x

 If gblnSaving Then

 '...code to try to fix problem

 MessageResponse = sivMsgRspRetry

 Else

 MessageResponse = sivMsgRspIgnore

 End If

 Case y

 MessageResponse = sivMsgRspIgnore

 Case Else

 MessageResponse = sivMsgRspAbort

 End Select

 Case sivMsgYesNo

 '....etc.

 Case sivMsgYesNoCancel

 '....etc.

 Case sivMsgRetryCancel

 '....etc.

End Select

End Sub

Example (Visual Basic 2005 Client)

Try

 gblnSaving = True

 sivMyApp.Save()

 gblnSaving = False

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

 Reference 85

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

'....And in the Message Event procedure

Private Sub sivMyApp_Message(_

 ByVal MessageNumber As Integer, _

 ByVal MessageText As String, _

 ByVal MessageType As sivMessageType, _

 ByRef MessageResponse As sivMessageResponse) _

Handles sivMyApp.Message

 Select Case MessageType

 Case sivMessageType.sivMsgOk

 MessageResponse = sivMessageResponse.sivMsgRspOk

 Case sivMessageType.sivMsgAbortRetryIgnore

 Select Case MessageNumber

 Case x

 If gblnSaving Then

 '...code to try to fix problem

 MessageResponse = sivMessageResponse.sivMsgRspRetry

 Else

 MessageResponse = sivMessageResponse.sivMsgRspIgnore

 End If

 Case y

 MessageResponse = sivMessageResponse.sivMsgRspIgnore

 Case Else

 MessageResponse = sivMessageResponse.sivMsgRspAbort

 End Select

 Case sivMessageType.sivMsgYesNo

 '....etc.

 Case sivMessageType.sivMsgYesNoCancel

 '....etc.

 Case sivMessageType.sivMsgRetryCancel

 '....etc.

 End Select

End Sub

86 Object Model Reference Guide

SetBusinessDate Method
Sets the current Microsoft Dynamics SL business date.

Applies To

SIVApplication

Syntax

object.SetBusinessDate Month, Day, Year

The SetBusinessDate method syntax has these parts:

Part Description

object An instance of SIVApplication.

Month ByRef integer. Represents the calendar month of the current business

date. Values can be 1 - 12.

Day ByRef integer. Represents the day of the month of the current business

date. Values can be between 1 and the last day of the month specified in

the Month argument.

Year ByRef integer. Represents the four-digit year of the current business

date. Values can be any four-digit number.

Remarks

Allows you to set the current Microsoft Dynamics SL business date. Before calling this method in your

code, you should prepare three integer variables to hold the month, day, and year, assign the desired

values to the variable, and pass them variables as the respective arguments to the method (see

examples).

The SetBusinessDate method, as well as all other methods and property set operations throughout

the Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

 7506 — Not logged in

 7514 — Business Date Error: Invalid Date

See Also

GetBusinessDate Method

Example (Visual Basic 6.0 Client)

'Assumes sivTB is an already-instantiated

'SIVToolbar object

 Dim iMonth As Integer, iDay As Integer, iYear As Integer

 iMonth = 12

 iDay = 31

 iYear = 2001

 On Error GoTo SET_DATE_ERROR

 sivTB.SetBusinessDate iMonth, iDay, iYear

 '...do something with the date information here

 Exit Sub

 Reference 87

SET_DATE_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7506

 MsgBox "Not logged in"

 Resume Next

 Case 7514

 MsgBox "Invalid date (M/D/Y): " _

 & iMonth & "/" _

 & iDay & "/"

 & iYear

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

Example (Visual Basic 2005 Client)

Dim iMonth As Integer, iDay As Integer, iYear As Integer

Try

 'Assumes sivTB is an already-instantiated

 'SIVToolbar object

 iMonth = 12

 iDay = 31

 iYear = 2001

 sivTB.SetBusinessDate(iMonth, iDay, iYear)

 '...do something with the date information here

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7506

 MsgBox("Not logged in")

 Case 7514

 MsgBox(String.Format("Invalid date: {0}/{1}/{2}", iMonth.ToString,

iDay.ToString, iYear.ToString))

 Case Else

 MsgBox(String.Format("{0}: {1}", lErrNumber.ToString(),

ex.Message))

 End Select

Catch ex As Exception

 MsgBox("Exception: " + ex.Message, MsgBoxStyle.Exclamation, ex.Source)

End Try

88 Object Model Reference Guide

SetCurrencyIDs Method
Sets the transaction currency ID for the current screen.

Applies To

SIVApplication

Syntax

object.SetCurrencyIDs TransactionCurrencyID As String, IntermediateCurrencyID As String

The SetCurrencyIDs method syntax has these parts:

Part Description

object An instance of SIVApplication.

TransactionCurrencyID String representing a valid currency ID code for the logged-

in company and database.

IntermediateCurrencyID String. Reserved for future use. Has no effect at this time.

Remarks

Allows you to set the current screen’s transaction currency ID.

The value that you pass for TransactionCurrencyID should correspond to a valid currency ID for the

current logged-in company and database. If you supply an invalid currency ID, then the Object Model

raises runtime error 7545.

The underlying application or a customization may disable the ability to change the transaction

currency. When that is the case, then calls to this method raise runtime error 7543.

At this point, IntermediateCurrencyID should always be a blank string. It is reserved for future use and

has no effect in the current version of the Microsoft Dynamics SL Object Model.

The SetCurrencyIDs method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

 7543 — Transaction Currency ID cannot be set at this time

 7545 — Transaction Currency ID is invalid

 7547 — Intermediate Currency ID is invalid

See Also

GetCurrencyIDs Method

Example

'Assumes sivApp is an already-instantiated
'SIVApp object

 On Error GoTo SET_CURYIDS_ERROR

 sivApp.SetCurrencyIDs "USD", ""

 Exit Sub

SET_CURYIDS_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7543

 Reference 89

 MsgBox "Transaction IDs can't be set now"

 Resume Next

 Case 7545

 MsgBox "Invalid Transaction Currency ID"

 Resume Next

 Case 7547

 'Shouldn't happen in current version

 'of Object Model

 MsgBox "Invalid Intermediate Currency ID"

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

90 Object Model Reference Guide

SetCurrencyView Method
Toggles the display currency for currency amounts on the current screen.

Applies To

SIVApplication

Syntax

object.SetCurrencyView CurrencyView As sivCurrencyView

The SetCurrencyView method syntax has these parts:

Part Description

object An instance of SIVApplication.

CurrencyView Integer of enumerated type sivCurrencyView representing the type of

currency to display amounts in (either system Base currency, or screen

transaction currency).

Remarks

Allows you to toggle the current screen’s display currency between the system base currency and the

screen transaction currency.

The value that you pass for CurrencyViewID should be one of the enumerated constants in the

sivCurrencyView type indicating either the system base currency or the screen’s transaction currency.

If the underlying application has blocked the toggling of currency view, then the Object Model raises

runtime error 7549.

The SetCurrencyView method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

 7549 — Currency view cannot be toggled

 7568 — Invalid value for sivCurrencyView enumeration

See Also

GetCurrencyView Method

Example (Visual Basic 6.0 Client)

'Assumes sivApp is an already-instantiated
'SIVApp object

 On Error GoTo SET_CURYVIEW_ERROR

 sivApp.SetCurrencyView sivCurrencyViewBase

 Exit Sub

SET_CURYVIEW_ERROR:

 Select Case Err.Number - vbObjectError

 Case 7549

 MsgBox "Can't toggle currency view"

 Resume Next

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 Reference 91

 "UNEXPECTED ERROR"

 End Select

Example (Visual Basic 2005 Client)

Try

 'Assumes sivApp is an already-instantiated

 'SIVApp object

 sivApp.SetCurrencyView(sivCurrencyView.sivCurrencyViewBase)

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7549

 MsgBox("Can't toggle currency view")

 Case Else

 MsgBox(String.Format("{0}: {1}", lErrNumber.ToString(),

ex.Message))

 End Select

Catch ex As Exception

 MsgBox("Exception: " + ex.Message, MsgBoxStyle.Exclamation, ex.Source)

End Try

92 Object Model Reference Guide

SetCustomizationLevel Method
Sets the Microsoft Dynamics SL customization level for applications during the current session.

Applies To

SIVApplication

Syntax

object.SetCustomizationLevel CustomizationLevel, UserID, ExcludeMacroCode

The SetCustomizationLevel method syntax has these parts:

Part Description

object An instance of SIVToolbar.

CustomizationLevel Integer of type sivCustomizationLevel. Represents the current

customization level of the toolbar session.

UserID String. The user ID to apply when setting the customization level to

sivCstLvlOneUser.

ExcludeMacroCode Boolean. Setting to True excludes macro code, while setting to False

includes macro code.

Remarks

Sets the current Microsoft Dynamics SL customization level and other global customization

information. Provides the functionality of select customization level in the user interface.

The UserID argument only has significance when CustomizationLevel is sivCstLvlOneUser. If UserID is

not a valid user id for the current system, then the Object Model returns error 7512.

When you set ExcludeMacroCode to True, then customizations will not run any of their underlying

script code. Only “cosmetic” customizations will be applied. This setting corresponds to the check box

labeled Exclude Event Code that the interactive user sees on Microsoft Dynamics SL’s Customization

Level dialog.

In order to call this method successfully, the sivToolbar object must already be logged on to the

database, the current user ID must have sufficient rights to set the customization level, and no

SIVApplication objects can be running.

The SetCustomizationLevel method, as well as all other methods and property set operations

throughout the Microsoft Dynamics SL Object Model, is synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the call to this method, whether the processing comes from the

core Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

 7506 — Not logged in

 7509 — Customization Level Error: Applications Running

 7510 — Customization Level Error: Enumeration Selection Error

 7511 — Customization Level Error: No Access Rights

 7512 — Customization Level Error: Specified Userid is invalid

See Also

GetCustomizationLevel Method

 Reference 93

Example (Visual Basic 6.0 Client)

'Assumes sivTB is an already-instantiated
'SIVToolbar object

 On Error GoTo SET_CUSTLEVEL_ERROR
 sivTB.SetCustomizationLevel sivCstLvlOneUser, "JONES", False
 Exit Sub

SET_CUSTLEVEL_ERROR:
 Select Case Err.Number - vbObjectError
 Case 7506
 MsgBox "Not logged in"
 Resume Next
 Case 7509
 MsgBox _
 "Can't set Customization Level with Applications running"
 Resume Next
 Case 7510
 MsgBox "Invalid Customization Level specified"
 Resume Next
 Case 7511
 MsgBox "No Access rights to set customization level"
 Resume Next
 Case 7512
 MsgBox "Invalid UserID for SingleUser customization"
 Resume Next
 Case Else
 MsgBox Err.Number & ": " & Err.Description, _
 "UNEXPECTED ERROR"
 End Select

Example (Visual Basic 2005 Client)

Try

 'Assumes sivTB is an already-instantiated

 'SIVToolbar object

 sivTB.SetCustomizationLevel(sivCustomizationLevel.sivCstLvlOneUser,

"JONES", False)

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7506

 MsgBox("Not logged in")

 Case 7509

 MsgBox("Can't set Customization Level with Applications running")

 Case 7510

 MsgBox("Invalid Customization Level specified")

 Case 7511

 MsgBox("No Access rights to set customization level")

 Case 7512

 MsgBox("Invalid UserID for SingleUser customization")

 Case Else

94 Object Model Reference Guide

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Reference 95

SetStatusBarText Method
Sets the text and the ToolTip text for the text pane of the status bar.

Applies To

SIVApplication

Syntax

object.SetStatusBarText Text, ToolTipText

The SetStatusBarText method syntax has these parts:

Part Description

object An instance of SIVToolbar.

Text String representing text to display in the text pane of the application

screen’s status bar.

ToolTipText String representing the ToolTip text that will pop up when the user

pauses the mouse over the text pane of the application screen’s status

bar. You may leave this string blank to default the ToolTipText to be the

same as the Text.

Remarks

You can change the text on the application screen’s status bar text panel as well as the ToolTip text for

that panel with the SetStatusBarText method.

The status bar is the area at the bottom of a Microsoft Dynamics SL application screen that contains

information in various panes. Panes include information about date and time as well as a text pane

with variable information.

The SetStatusBarText method affects only the text pane with its Text argument and the ToolTip text for

the same pane with its ToolTipText argument. ToolTip text represents the contents of the popup that

appears when the user pauses the mouse over the text pane.

If you pass a blank string as ToolTipText, then the text pane’s ToolTip contents will default to be the

same as the text pane itself.

Calls to the SetStatusBarText method, as well as all property set operations and other method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by this method call, whether the processing comes from the core

Microsoft Dynamics SL kernel, the original application, or any customization of the application.

Possible Exceptions

None

Example

'Assumes sivApp is an already-instantiated

'SIVApplication object

 sivApp.SetStatusBarText "Waiting", _

 "Be Patient"

96 Object Model Reference Guide

SetTranCurrencyAndRate Method
Sets the transaction currency ID for the current screen based on the rate type and effective date.

Applies To

SIVApplication

Syntax

object.SetTranCurrencyAndRate TransactionCurrencyID As String, RateType As String,

EffectiveDate As String

The SetTranCurrencyAndRate method syntax has these parts:

Part Description

object An instance of SIVApplication.

TransactionCurrencyID String representing the valid currency ID code for the company and

database currently in use.

RateType String representing the rate type to use to set currency rate.

EffectiveDate String representing the effective date to use to set currency rate.

This value should be passed in the Date format used by the

Microsoft Dynamics SDK.

Remarks

The value that you pass for TransactionCurrencyID should correspond to a valid currency ID for the

company and database the user is currently accessing. If you supply a currency ID that is not valid,

runtime error 7545 occurs.

An underlying application or a customization may affect the ability to change the transaction currency.

If this occurs, calls to this method result in runtime error 7543.

The SetTranCurrencyAndRate method, as well as all other methods and set property operations

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until completion of all Microsoft

Dynamics SL processing resulting from the call to this method. This is regardless of whether the

processing comes from the Microsoft Dynamics SL kernel, the original application, or any

customization of the application.

Possible Exceptions

 Runtime error 7543 — Transaction Currency ID cannot be set at this time.

 Runtime error 7545 — Transaction Currency ID is invalid.

 Runtime error 7546 — Rate Type is invalid.

See Also

GetCurrencyIDs Method, SetCurrencyIDs Method

Example

'Assumes sivApp is an SIVApp object that is

'already instantiated

 On Error GoTo SET_CURYIDS_ERROR

 sivApp.SetTranCurrencyAndRate "CAD", "A", "09/30/2009"

 Exit Sub

SET_CURYIDS_ERROR:

 Reference 97

 Select Case Err.Number - vbObjectError

 Case 7543

 MsgBox "Transaction IDs can't be set now"

 Resume Next

 Case 7545

 MsgBox "Invalid Transaction Currency ID"

 Resume Next

 Case 7546

 MsgBox "Invalid Rate Type ID"

 Case Else

 MsgBox Err.Number & ": " & Err.Description, _

 "UNEXPECTED ERROR"

 End Select

98 Object Model Reference Guide

SIVApplication Object

Corresponds to an instance of a Microsoft Dynamics SL application screen.

Remarks

The SIVApplication object represents a running instance of a Microsoft SL SDK application. You can

use such an object to access the functionality of the application that is available to an interactive user,

including reading and altering data through the on-screen controls and navigating through various

record sets on the screen. See the references to this object’s various properties, methods, and events

listed below for more details.

You initialize an SIVApplication object by setting an SIVApplication object variable to point to the return

value of the SIVToolbar’s StartApplication method (see the example below).

An automation client may not be able to start an SIVApplication for various reasons. See

documentation for the StartApplication method of the SIVToolbar object for more details.

By default the SIVApplication object is invisible (Visible property = False) when it is initialized by the

StartApplication method of the SIVToolbar object. When the SIVApplication object is invisible, it does

not show up on the Windows Taskbar.

After calling the Quit method for the SIVApplication object, the object will be destroyed by calling its

Dispose method. If the SIVApplication object is destroyed before calling the Quit method, then the

application will automatically become visible to the user.

Any exceptions raised during the shutdown of the application, such as prompts to save changes or

warnings about incorrect data settings, prevent the application from shutting down.

If an automation client holds a valid reference to a visible instance of SIVApplication, then the

interactive user will be unable to close it.

Properties

Controls property, Currency property, EventLog property, Value property, Visible property.

Methods

GetCurrencyView method, GetCurrencyIDs method, GetCustomObject method, GetEntityStatus

method, GetStatusBarText method, GridView method, Cancel method, Delete method, Dispose

method, First method, Last method, New method, Next method, Previous method, Quit method,

Save method, SetStatusBarText method, SetCurrencyIds method, SetCurrencyView method.

Events

Message event, SubFormDisplay event.

Example

'Assume that sivTB is an instance
'of SIVToolbar and that MyApp.exe is a
'Microsoft SL SDK application in the Microsoft Dynamics SL
'executable directory

Dim sivMyApp As SIVApplication

Set sivMyApp = sivTB.StartApplication("MyApp.exe")

 Reference 99

SIVControl Object

Corresponds to a control on the Microsoft Dynamics SL application screen represented by a

SIVApplication object.

Syntax

SIVControl

Remarks

An SIVControl object is only accessible as a member the Controls collection of an SIVApplication

object. Once you have located in the collection an SIVControl object that you want to work with, you

can set an object variable of type SIVControl to point to that collection member. Then, you can

program with the object variable. You can also use the With...End With construct to program with a

member of the Controls collection.

Index can be an integer value referring to the object’s position within the SIVApplication’s Controls

collection. The use of a numeric index is generally most practical when you need to get and save a

reference to a control in your code whose name you did not know beforehand.

When you know the name of the control beforehand, it is usually more practical to use a string index

that gives the name of the control.

Unlike a standard Visual Basic application’s control names (which are only unique to their containing

form), control names in a Microsoft SL SDK application are unique in the entire Microsoft SL SDK

application, even if the Microsoft SL SDK application has multiple forms. Thus, it is never necessary to

know the name of the individual form where a control resides in order to locate it with its name. This is

because the control name is unique to the entire Microsoft SL SDK application, so there is no danger

of confusing the control with a control of the same name on a different form in the same Microsoft SL

SDK application.

When you need to refer to an SIVControl that points to a member of a control array in the underlying

application, then you must use the control array index as part of the control name that you pass as an

argument to the Controls collection. For example, you would refer to element 2 of a control array of

SAFOption controls as follows:

sivMyApp.Controls(“optCreditCard(2)”)

SAFOption is the most common type of control found in control arrays.

You can refer to the individual standard Visual Basic property settings of a control and to special

Microsoft Dynamics SL properties through the control’s Properties collection. You can read or write to

a control’s default property (also known as the control’s value) by either simply referring to the control

object itself in code (the default property is implicitly understood) or by referring the control’s Value

property.

Note: Not all ActiveX controls and no .NET WinForm controls support a default property, so this

technique must be used with caution.

The Microsoft Dynamics SL Object Model does not expose any of a control’s methods or events.

Note that controls originally programmed in a Microsoft Dynamics SL application and controls added

via Customization Manager have no difference in the Microsoft Dynamics SL Object Model.

Properties

Name property, Properties property, Value property

100 Object Model Reference Guide

See Also

SIVControls Collection

Example (Visual Basic 6.0 Client)

'Technique that uses a control object variable
'to point to a control in a screen's Controls collection

Dim ctrlCurr As SIVControl

Set ctrlCurr = sivMyApp.Controls("cTotalBalance")

'set the Value property by default:

ctrlCurr = -300

'directly set Value property of a control

sivMyApp.Controls("cCustID") = "C300"

'set a property that is not the default

sivMyApp.Controls("cCustID").BackColor = vbRed

Example (Visual Basic 2005 Client)

'Technique that uses a control object variable

'to point to a control in a screen's Controls collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivMyApp.Controls("cTotalBalance")

'set the Value property by default:

ctrlCurr.Value = -300

'directly set Value property of a control

sivMyApp.Controls("cCustID").Value = "C300"

'set a property that is not the default

sivMyApp.Controls("cCustID").Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

 Reference 101

SIVControls Collection

A collection whose elements represent the controls available on a Microsoft SL SDK application

screen. Each element of the collection is an object of type SIVControl.

Applies To

SIVApplication object

Syntax

object.Controls.Count
 object.Controls.Item
 object.Controls(index)

The SIVControls collection syntax has these parts:

Part Description

object An instance of SIVApplication.

index Either an integer between 1 and object.Controls.Count or a unique string

key that corresponds to the name of the control that you are trying to

access.

Methods

Count method, Item method

Remarks

You can traverse the collection of SIVControl objects by using a For...Each loop through the Controls

collection of the SIVApplication object (see the example below).

Index can be an integer value referring to the Controls collection. The use of a numeric index is

generally most practical when you need to get and save a reference to a control in your code whose

name you did not know beforehand.

When you know the name of the control beforehand, it is usually more practical to use a string index

that gives the name of the control.

The following control types are exposed in the Controls collection:

 SAFCheck

 SAFCombo

 DSLDate

 SAFFloat

 SAFInteger

 SAFMaskedText

 SAFOption

 Standard Visual Basic and third-party controls that are available to the user interface of the

Microsoft SL SDK application represented by the current instance of SIVApplication. Note that

problems caused by ill-behaved controls (that is, non-Microsoft Dynamics SL controls with

features that, in some way, could “break” the proper functioning of Microsoft Dynamics SL or of

the Microsoft Dynamics SL Object Model) are the responsibility of the automation programmer or

102 Object Model Reference Guide

of the Microsoft SL SDK programmer who created the application. See “Working with Troublesome

Controls” for further discussion of this topic.

The following control types are specifically not exposed in the Controls collection:

 Notes/Attachments Icon

 SAFContainer

 SAFDesigner

 SAFGrid

 SAFNewFrame

 SAFNewTab

 SAFUpdate

 StatusBar (Microsoft SL SDK)—see the SetStatusBarText method

Note that there is no difference for the Microsoft Dynamics SL Object Model between controls

originally programmed in a Microsoft Dynamics SL application and controls added later with

Customization Manager.

See Also

SIVControl Object

Example

'Using For...Each to Traverse the Controls collection

Dim ctrlCurr As SIVControl

For Each ctrlCurr in sivMyApp.Controls

 MsgBox ctrlCurr.Name

Next ctrlCurr

 Reference 103

SIVProperties Collection

A collection whose elements represent the properties available for a control on a Microsoft SL SDK

application screen. Each element of the collection is an object of type SIVProperty.

Applies To

SIVControl object

Syntax

object.Properties.Count
 object.Properties.Item
 object.Properties(index)

The SIVProperties collection syntax has these parts:

Part Description

object An instance of SIVControl.

index Either an integer between 1 and object.Properties.Count or a unique

string key that corresponds to the name of the control property that you

are trying to access.

Methods

Count method, Item method

Remarks

You can traverse the collection of SIVProperty objects by using a For...Each loop through the Properties

collection of an SIVControl object (see the example below).

Index can be an integer value referring to the Properties collection. The use of a numeric index is

generally most practical when you need to get and save a reference to a property in your code whose

name you did not know beforehand.

When you know the name of the property beforehand, it is usually more practical to use a string index

that gives the name of the property.

A number of control properties are not exposed in the SIVProperties collection:

 Container property

 Hidden properties

 Non-browse able properties

 Object property

 Parent property

 Properties that take parameters

 Visible property (not exposed for forms, exposed for other controls)

See Also

Appendix G: Visual Basic .NET-Related Changes, Count Property, Properties Collection (SIVControl

Object), SIVProperty Object

104 Object Model Reference Guide

Example

'Using For...Each to Traverse the Properties collection
'Assume that sivctrlCurr is an existing instance
'of an SIVControl object

Dim prCurr As SIVProperty

For Each prCurr in sivctrlCurr.Properties.Item

 'Show property name in MsgBox Caption and

 'its current setting in the MsgBox itself

 MsgBox prCurr.Value , prCurr.Name

Next prCurr

 Reference 105

SIVProperty Object

Corresponds to a property of a control on a Microsoft Dynamics SL application screen.

Applies To

Properties object

Remarks

Apart from a control’s value (see the following paragraph), all control properties in a Microsoft

Dynamics SL automation client objects are only accessible as an SIVProperty member of the

Properties collection of the SIVControl object. Once you have located in the Properties collection a

SIVProperty object that you want to work with, you can set an object variable of type SIVProperty to

point to that collection member. Then, you can program with the object variable (see the example

below). You can also use the With...End With construct to program with a member of the Properties

collection.

For each Microsoft Dynamics SL control type (SAF control) and for most non-Microsoft Dynamics SL

Visual Basic controls, there is a default property that you do not need to refer to by name. This

property is known in Visual Basic terminology as the control’s value and it corresponds to the

SIVControl object’s Value property. You can refer directly to the default property without the use of the

control’s Properties collection by simply referring to the control directly, as in the following example:

sivMyApp.Controls(“cTotal”).Value = 1000

See this documentation’s discussion of each of the SAF controls for a description of each control’s

default property. You can find information about the default properties of standard Visual Basic and

third-party controls in their respective documentation.

Note: Not all ActiveX controls and no .NET WinForm controls support a default property, so this

technique must be used with caution.

Note that your automation client’s attempt to set a property value is subject to any restrictions on the

control or on the specific property’s value imposed by either the original control itself, the original

Microsoft Dynamics SL application, or existing customizations that are currently in force (based on the

current value of the SIVToolbar object’s CustomizationLevel property). The Microsoft Dynamics SL

Object Model raises an error to the automation client for all violations of data type, masking, and data-

length rules caused by the client’s attempt to set a property.

See this documentation’s discussion of each of the SAF controls for a description of data validation

issues for particular controls. You can also find information about property restrictions in the Microsoft

SL SDK documentation for Microsoft Dynamics SL controls, or in the respective documentation for

standard Visual Basic and third-party controls.

Index can be an integer value referring to the object’s position within the SIVControl’s Properties

collection. The use of a numeric index is generally most practical when you need to get and save a

reference to a property in your code whose name you did not know beforehand.

When you know the name of the property beforehand, it is usually more practical to use a string index

that gives the name of the property.

A property setting is only specific to the current instance of the SIVApplication object where you set it.

Changes that you make to a control’s property do not persist (carry over) to other instances of the

same application, even if those instances are running at the same time as the instance where you

change the property.

Listed below are Microsoft Dynamics SL-specific properties that you can use in automation client code.

Not all Microsoft Dynamics SL controls support all the properties listed. Note that when a Microsoft

106 Object Model Reference Guide

Dynamics SL property name for an SAF control is the same as a standard Visual Basic property name,

then the Microsoft Dynamics SL property name takes precedence.

Note: Microsoft supports only the properties of Microsoft Dynamics SL Object Model given in the

following two lists. While it is possible to access other properties than those listed here, Microsoft

reserves the right to change or withdraw its support of those unlisted properties.

Commonly Used Microsoft Dynamics SL-specific properties exposed as SIVProperty objects

Property Name Description

BlankErr Boolean (default is False). If True, then an entry is required in this

control’s contents, and the entity to which this control belongs cannot be

saved if the control is blank (an error is raised). Suggested use: check

the BlankErr property before attempting to save or navigate data. If it is

True, then check the control’s contents.

DBNav Used to facilitate navigation through all database records in the result

set of a SQL statement.

FalseText Determines the value of the underlying data field whenever the control is

not checked.

FieldClass Associates a control with a particular class of data items having global

display and/or operational characteristics.

FieldName Facilitates proper runtime binding between the control and its underlying

Visual Basic data variable by operating in conjunction with the SetAddr

statement.

Level Associates the control with a logical group of information contained

within the application.

List Determines the fixed list of valid data values for the underlying field

along with corresponding descriptions.

Mask Determines the type and number of characters that can be entered for a

particular field.

Max Determines the maximum valid value for the control.

Min Determines the minimum valid value for the control.

PV Determines all possible values currently existing in the database.

TrueText Determines the value of the underlying data field whenever the check

box or option button is selected.

Value Represents the value of the data in the control.

The list below contains the most commonly-used Visual Basic standard properties. Only properties that

Microsoft supports are listed. Many other properties are available, but Microsoft does not support

them.

Commonly Used Standard Visual Basic properties exposed as SIVProperty objects

Property Name Description

Align Integer (enumerated constant, default is vbLeft).

BackColor Background color of an object.

Caption Text displayed next to the control.

Font Identifies a specific font for an object.

ForeColor Foreground color used to display data in an object.

Name Name of the control. Display only.

Height Height of the control, usually in twips (but unit of measure depends on

ScaleMode setting of the container object, which is not available in the

Microsoft Dynamics SL Object Model).

 Reference 107

Property Name Description

Left Distance of leftmost edge of the control from the inner left boundary of

the container object, usually in twips (but unit of measure depends on

ScaleMode setting of the container object, which is not available in the

Microsoft Dynamics SL Object Model).

Top Distance of topmost edge of the control from the inner top boundary of

the container object, usually in twips (but unit of measure depends on

ScaleMode setting of the container object, which is not available in the

Microsoft Dynamics SL Object Model).

Width Width of the control, usually in twips (but unit of measure depends on

ScaleMode setting of the container object, which is not available in the

Microsoft Dynamics SL Object Model).

Value Where this property exists, it is the default property of the control. Not all

controls have a Value property, even some controls that do support a

default property.

Visible Boolean value determining whether or not the control is visible to the

interactive user. Of course, no controls are visible if the parent

SIVApplication object is invisible.

The following standard Visual Basic properties are not available as SIVProperty objects:

 Container

 Object

 Parent

Attempts to set any property’s value, as well as any method calls to the Microsoft Dynamics SL Object

Model, are synchronous with respect to the automation client. That is, control does not return to the

automation client until the completion of all Microsoft Dynamics SL processing caused by the attempt

to set the property, whether the processing comes from the core Microsoft Dynamics SL kernel, the

original application, or any customization of the application.

See Also

Appendix G: Visual Basic .NET-Related Changes, Properties Collection (SIVControl Object), SIVProperty

Object, Value Property (SIVProperty Object)

Example (Visual Basic 6.0 Client)

'set a control object variable
'to point to a control in a screen's Controls collection
Dim ctrlCurr As SIVControl
Set ctrlCurr = sivMyApp.Controls("cTotalBalance")

'set the Value property by default:

ctrlCurr = -300

'directly set Value property of a control

sivMyApp.Controls("cCustID") = "C300"

'set a property that is not the default

sivMyApp.Controls("cCustID").Properties.Item("BackColor") = vbRed

Example (Visual Basic 2005 Client)

'Technique that uses a control object variable

'to point to a control in a screen's Controls collection

Dim ctrlCurr As SIVControl

ctrlCurr = sivMyApp.Controls("cTotalBalance")

'set the Value property by default:

108 Object Model Reference Guide

ctrlCurr.Value = -300

'directly set Value property of a control

sivMyApp.Controls("cCustID").Value = "C300"

'set a property that is not the default

sivMyApp.Controls("cCustID").Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

 Reference 109

SIVToolbar Object
Corresponds to an instance of the toolbar.

Remarks

The SIVToolbar object represents a running instance of the toolbar. Just as the interactive user cannot

run any Microsoft Dynamics SL application screens without first running the toolbar, so it is with the

Microsoft Dynamics SL automation client. The Microsoft Dynamics SL automation client cannot run

any Microsoft Dynamics SL applications without first obtaining a logged-on instance of the SIVToolbar

object.

You will use the SIVToolbar object at the following points in a Microsoft Dynamics SL automation

session:

 Begin an automation session by instantiating the SIVToolbar object.

 Log on to a database context with the Login method of SIVToolbar.

 Run one or more Microsoft Dynamics SL applications by instantiating SIVApplication objects

through the StartApplication method.

 End an automation session by calling the Quit method and destroying the SIVToolbar instance by

callings its Dispose method.

There can be only one instance of SIVToolbar running on any given workstation. This includes both

automation clients and interactive copies of the toolbar.

For considerations about using the SIVToolbar object concurrently with an interactive user session on

the same workstation, see the documentation on the Login method of the SIVToolbar object.

By default the SIVToolbar object is invisible (Visible property = False) when it is initialized by your code.

When the SIVToolbar object is invisible, it does not show up on the Windows Taskbar. If the interactive

user is logged on to the workstation, then the SIVToolbar is visible and you cannot set its Visible

property to False. See the documentation on the Visible property for more information.

If an automation client holds a valid reference to a visible instance of SIVToolbar, then the interactive

user will be unable to close it.

If you destroy all automation client instances of the SIVToolbar object but do not call the Quit method,

then the toolbar automatically becomes visible to the interactive user.

Properties

BusinessDate property, CustomizationLevel property, InitializeMode property, Visible property.

Methods

Dispose method, Login method, Logout method, StartApplication method, Quit method.

See Also

DSLDate Control (SIVControl Object), InitializeMode Property, Login Method, Logout Method, Quit

Method, StartApplication Method, Visible Property

110 Object Model Reference Guide

Example (Visual Basic 6.0 Client)

'Assume that MyApp.exe is a Microsoft SL SDK application
'in the Microsoft Dynamics SL executable folder

'STEP 1: Declare variables for Toolbar and Application

Dim sivtbCurrent As SIVToolbar

Dim sivMYApp As SIVApplication

'STEP 2: Initialize Toolbar and Log in

'(use pretend login information)

Set sivtbCurrent = New SIVToolbar

sivtbCurrent.Login "MyServer", "MySystemDB", _

"MyCompany", "SYSADMIN", "MyPass"

'STEP 3: Start application under new instance of Toolbar

Set sivMyApp = sivtbCurrent.StartApplication "MyApp.exe"

'STEP 4: do some stuff with the application

'...

'STEP 5: Quit app and Toolbar

'and free memory used by Toolbar

sivMyApp.Quit

sivMyApp.Dispose()

Set sivMyApp = Nothing

sivtbCurrent.Logout()

sivtbCurrent.Quit

sivtbCurrent.Dispose()

Set sivtbCurrent = Nothing

Example (Visual Basic 2005 Client)

'Assume that MyApp.exe is a Microsoft SL SDK application

'in the Microsoft Dynamics SL executable folder

'STEP 1: Declare variables for Toolbar and Application

Dim sivtbCurrent As SIVToolbar

Dim sivMYApp As SIVApplication

'STEP 2: Initialize Toolbar and Log in

'(use pretend login information)

sivtbCurrent = New SIVToolbar

sivtbCurrent.Login("MyServer", "MySystemDB", _

"MyCompany", "SYSADMIN", "MyPass")

'STEP 3: Start application under new instance of Toolbar

sivMYApp = sivtbCurrent.StartApplication("MyApp.exe")

'STEP 4: do some stuff with the application

'...

'STEP 5: Quit app and Toolbar

'and free memory used by Toolbar

sivMYApp.Quit()

sivMYApp.Dispose()

sivMYApp = Nothing

sivtbCurrent.Logout()

sivtbCurrent.Quit()

sivtbCurrent.Dispose()

sivtbCurrent = Nothing

 Reference 111

StartAppAndAutomate Function (Microsoft SL SDK

Applications)
Allows a Microsoft SL SDK application to become an Object Model client.

Syntax

Set Retval = StartAppAndAutomate ExeName as String, SolomonErr As Integer, OSErr As Long

The StartAppAndAutomate method syntax has these parts:

Part Description

Retval An instance of SIVApplication.

ExeName String. The relative path and name of the executable to be automated.

SolomonErr ByRef integer. Represents any Microsoft Dynamics SL error that the

underlying application returned while loading.

OSErr ByRef long. Represents any operating system error underlying Microsoft

Dynamics SL error 7519.

Remarks

This statement allows the Microsoft SL SDK project to obtain a pointer to an SIVApplication object. The

Microsoft SL SDK project can then automate the object. You can create an SIVApplication object, set

control values to navigate to a particular recordset, and then destroy the reference to the

SIVApplication object to make the application available to the interactive user.

The ExeName parameter must give the name of a valid Microsoft Dynamics SL executable, including

the exe extension. If the executable is a standard Microsoft Dynamics SL screen, only the executable

name is needed:

'standard Customer maintenance screen
Set SIVAppCust = _
 StartAppAndAutomate("0826000.exe", _
 iSolErr, iOSErr)

If the executable is a non-standard Microsoft SL SDK application, the path to the executable is

required, assuming the main Microsoft Dynamics SL directory as the root:

'custom app in file at \Microsoft Dynamics SL\tx\MyApp.exe
Set SIVAppCust = _
 StartAppAndAutomate("tx\MyApp.exe", _
 iSolErr, iOSErr)

You need to pass an integer variable as the SolErr parameter. If there was an error starting the

application, SolErr will contain the Microsoft Dynamics SL error number.

You need to pass a long variable as the OSErr parameter. This parameter usually contains 0 after the

call to StartAppAndAutomate, unless the value of SolErr is returned as 7519 (problem starting

application).

To use this method, the Microsoft SL SDK Project must set a reference to

Microsoft.Dynamics.SL.ObjectModel.dll.

Possible Exceptions

None (All exceptions handled as return values in SolomonError and OSError parameters.)

112 Object Model Reference Guide

Example

'Code within a Microsoft SL SDK application

'Note that a reference to Microsoft.Dynamics.SL.ObjectModel is required for

this example

Dim SIVApp As SIVApplication
Dim iSolErr As Integer
Dim iOSErr As Long
Set SIVApp = StartAppAndAutomate _
 ("MyApp.exe", iSolErr, iOSErr)

'If OS Error loading app
If iSolErr = 7519 Then
 'Handle the OS error
 Select Case iOSErr
 Case 5
 '....etc.
 End Select

'Or if other Microsoft Dynamics SL Error
ElseIf iSolErr <> 0 Then
 MsgBox "Error when loading app"

'Or if app loaded successfully
Else
 'put automation code here
End If

 Reference 113

StartApplication Method
Starts a Microsoft SL SDK application and returns an instantiated SIVApplication object.

Applies To

SIVToolbar object

Syntax

Set objvariable = object.StartApplication(exename)

The StartApplication method syntax has these parts:

Part Description

objvariable A new instance of SIVApplication exposing the functionality in exename.

object An instance of SIVToolbar.

exename Required. String giving the name of the executable to run, including the

EXE extension. See more detailed requirements in further discussion

below.

cpnyid Optional. Unique company ID.

Return Value

A pointer to a SIVApplication object that refers to the application.

Remarks

The SIVToolbar object must already be logged on to the appropriate company with a login context (user

ID) that has sufficient rights to run the application. See Possible Exceptions below.

This instance of the application counts toward the total number of concurrent users allowed by the

site license. It is therefore possible that attempting to run this instance of the application will cause

the system to exceed the maximum number of users allowed. See Possible Exceptions below.

The StartApplication method may fail because the original developer of the underlying Microsoft

Dynamics SL application has disabled the use of the Microsoft Dynamics SL Object Model for this

application.

By default, the application is invisible when it starts.

If the interactive user has the same application already running, the Microsoft Dynamics SL Object

Model will start another instance of the application. The Microsoft Dynamics SL Object Model is unable

to create an object from an already-running instance of an application.

The exename parameter must give the name of a valid Microsoft Dynamics SL executable, including

the exe extension. If the executable is a standard Microsoft Dynamics SL screen, only the executable

name is needed:

‘standard Customer maintenance screen

Set sivMyScreen = sivToolbar.StartApplication(“0826000.exe”)

If the program is being run against a specific company, the company id must be passed as the second

parameter:

‘standard Customer maintenance screen in company “0010”

Set sivMyScreen = sivToolbar.StartApplication(“0826000.exe”,”0010”)

If the executable is a non-standard Microsoft SL SDK application, then the path to the executable is

required, assuming the main Microsoft Dynamics SL directory as the root:

‘custom app in file at \Microsoft Dynamics SL\tx\MyApp.exe

Set sivMyScreen = sivToolbar.StartApplication(“tx\MyApp.exe”)

114 Object Model Reference Guide

The StartApplication method, as well as all other methods and property set operations throughout the

Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

A number of original Microsoft Dynamics SL executables do not support the Microsoft Dynamics SL

Object Model. None of these are actual end user accounting applications, but are rather various types

of utilities. See “Appendix C: Limitations” for more specific information.

Possible Exceptions

 7506 — Not Logged In

 7516 — Start Application Error: Login context may not have rights to run the application

 7517 — Start Application Error: User Limit Exceeded

 7519 — Start Application Error: Unable to start application due to operating system error: specific

error number

 7520 — Start Application Error: Unable to start application due to fatal error during form load:

specific error number

 7521 — Start Application Error: Initialize mode is on, but user does not have rights to run

application in Initialize mode

 7555 — Start Application Error: Application did not return an object handle

 7563 — Object Model disabled in application

Example (Visual Basic 6.0 Client)

'following code assumes that sivtbCurrent
'is a SIVToolbar object that has already
'successfully logged in

On Error GoTo STARTAPP_ERR

dim sivMyApp As SIVApplication

'TWO POSSIBLE FORMS FOR THE STRING ARGUMENT:

'A) for a custom Microsoft SL SDK app in a directory named tx

'under the main Microsoft Dynamics SL directory:

Set sivMyApp = sivtbCurrent.StartApplication("tx\MyApp.exe")

'B) for a standard Microsoft Dynamics SL screen:

Set sivMyApp = sivtbCurrent.StartApplication("0826000.exe")

‘C) for a standard Microsoft Dynamics SL screen specifically in

Company database ‘0010’:

Set sivMyScreen = sivToolbar.StartApplication(“0826000.exe”, “0010”)

Exit Sub

STARTAPP_ERR:

Select Case Err.Number - vbObjectError

 Case 7506

 Case 7516

 Case 7517

 Case 7519

 Case 7520

 Case 7521

 Case 7563

 Reference 115

 Case Else

End Select

Example (Visual Basic 2005 Client)
Try

 'TWO POSSIBLE FORMS FOR THE STRING ARGUMENT:

 'A) for a custom Microsoft SL SDK app in a directory named tx

 'under the main Microsoft Dynamics SL directory:

 sivMyApp = sivtbCurrent.StartApplication("tx\MyApp.exe")

 'B) for a standard Microsoft Dynamics SL screen:

 sivMyApp = sivtbCurrent.StartApplication("0826000.exe")

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Then

 lErrNumber = ex.ErrorCode - vbObjectError

 ElseIf ex.ErrorCode - vbObjectError > 0 Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case 7506

 Case 7516

 Case 7517

 Case 7519

 Case 7520

 Case 7521

 Case 7563

 Case Else

 MsgBox(ex.Message, _

 MsgBoxStyle.Exclamation, _

 String.Format("{0} Error {1}", ex.Source,

lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox("Exception: " + ex.Message, MsgBoxStyle.Exclamation, ex.Source)

End Try

116 Object Model Reference Guide

StartApplication_2 Method
Starts a Microsoft SL SDK application and returns an instantiated SIVApplication object. This method

may be used when developing with Visual Basic 6.

Applies To

SIVToolbar object

Syntax

Set objvariable = object.StartApplication_2(exename,cpnyid)

The StartApplication_2 method syntax has these parts:

Part Description

objvariable A new instance of SIVApplication exposing the functionality in exename.

object An instance of SIVToolbar.

exename Required. String giving the name of the executable to run, including the

EXE extension. See more detailed requirements in further discussion

below.

cpnyid Unique company ID.

Return Value

A pointer to a SIVApplication object that refers to the application.

Remarks

The SIVToolbar object must already be logged on to the appropriate company with a login context (user

ID) that has sufficient rights to run the application. See Possible Exceptions below.

This instance of the application counts toward the total number of concurrent users allowed by the

site license. It is therefore possible that attempting to run this instance of the application will cause

the system to exceed the maximum number of users allowed. See Possible Exceptions below.

The StartApplication_2 method may fail because the original developer of the underlying Microsoft

Dynamics SL application has disabled the use of the Microsoft Dynamics SL Object Model for this

application.

By default, the application is invisible when it starts.

If the interactive user has the same application already running, the Microsoft Dynamics SL Object

Model will start another instance of the application. The Microsoft Dynamics SL Object Model is unable

to create an object from an already-running instance of an application.

The exename parameter must give the name of a valid Microsoft Dynamics SL executable, including

the exe extension. If the executable is a standard Microsoft Dynamics SL screen, only the executable

name is needed:

‘standard Customer maintenance screen

Set sivMyScreen = sivToolbar.StartApplication_2(“0826000.exe”, “0010”)

If the executable is a non-standard Microsoft SL SDK application, then the path to the executable is

required, assuming the main Microsoft Dynamics SL directory as the root:

‘custom app in file at \Microsoft Dynamics SL\tx\MyApp.exe

Set sivMyScreen = sivToolbar.StartApplication_2(“tx\MyApp.exe”, “0010”)

The StartApplication_2 method, as well as all other methods and property set operations throughout

the Microsoft Dynamics SL Object Model, is synchronous with respect to the automation client. That is,

control does not return to the automation client until the completion of all Microsoft Dynamics SL

 Reference 117

processing caused by the call to this method, whether the processing comes from the core Microsoft

Dynamics SL kernel, the original application, or any customization of the application.

A number of original Microsoft Dynamics SL executables do not support the Microsoft Dynamics SL

Object Model. None of these are actual end user accounting applications, but are rather various types

of utilities. See “Appendix C: Limitations” for more specific information.

Possible Exceptions

 7506 — Not Logged In

 7516 — Start Application Error: Login context may not have rights to run the application

 7517 — Start Application Error: User Limit Exceeded

 7519 — Start Application Error: Unable to start application due to operating system error: specific

error number

 7520 — Start Application Error: Unable to start application due to fatal error during form load:

specific error number

 7521 — Start Application Error: Initialize mode is on, but user does not have rights to run

application in Initialize mode

 7555 — Start Application Error: Application did not return an object handle

 7563 — Object Model disabled in application

Example (Visual Basic 6.0 Client)

'following code assumes that sivtbCurrent
'is a SIVToolbar object that has already
'successfully logged in

On Error GoTo STARTAPP_ERR

dim sivMyApp As SIVApplication

'TWO POSSIBLE FORMS FOR THE STRING ARGUMENT:

'A) for a custom Microsoft SL SDK app in a directory named tx

'under the main Microsoft Dynamics SL directory:

Set sivMyApp = sivtbCurrent.StartApplication_2("tx\MyApp.exe", “0010”)

'B) for a standard Microsoft Dynamics SL screen:

Set sivMyApp = sivtbCurrent.StartApplication_2("0826000.exe", “0010”)

Exit Sub

STARTAPP_ERR:

Select Case Err.Number - vbObjectError

 Case 7506

 Case 7516

 Case 7517

 Case 7519

 Case 7520

 Case 7521

 Case 7563

 Case Else

End Select

118 Object Model Reference Guide

StatusBar Control (Microsoft SL SDK Application)

Remarks

Not directly exposed by the Microsoft Dynamics SL Object Model.

However, it is possible to manipulate the status bar on the Microsoft SL SDK application screen

through the Microsoft Dynamics SL Object Model by using the SetStatusBar method of the

SIVApplication object.

 Reference 119

SubFormDisplay Event
Gives the automation client control over what occurs while a subform is open. Allows the automation

client to call any Object Model methods from within an open subform and close the open subform

before an event has finished processing.

Applies To

SIVApplication

Syntax

FormName - (ByVal string)

The SubFormDisplay event syntax has these parts:

 Part

 Description

 string

The name of the subform being displayed.

Remarks

Normally when an automation client clicks a button to display a subform, control is not returned to the

client until the subform is closed. The SubFormDisplay event allows an automation client to open a

subform, perform an action (that is, exercise control), and then close the subform.

The SubFormDisplay event is raised to the automation client whenever a subform is going to be

displayed, even if the application being automated is invisible. SubFormDisplay supports recursion: a

subform can contain a button that opens another subform. Clicking the button within the current event

(that is, the first subform) immediately calls the event again for the second subform. The second event

contains the name of the second subform in the FormName parameter. This enables the automation

client to identify the subform for which the event has been called.

Whenever the automation client is running code in the SubFormDisplay event, SubFormDisplay should

be used only with the subform for which the SubFormDisplay event has been raised. For example, if

the frmAddress subform is open, the Object Model raises the SubFormDisplay event with frmAddress

as the FormName parameter. In this case, only controls and entities existing on frmAddress should be

manipulated. The resource on any other form should not be accessed.

Note: Technically, the automation client can access the controls and entities on other subforms from

within SubFormDisplay. However, the results are unpredictable and probably not what is expected.

120 Object Model Reference Guide

Value Property (SIVControl Object)
Represents the on-screen contents of a control represented by an SIVControl object. The Value

property is the default property for a SIVControl object.

Applies To

SIVControl object

Syntax

object.Value = newvalue

object = newvalue (Visual Basic 6.0 Clients only)

Remarks

The Value property represents what the user sees as the contents of the on-screen control and (unless

the control is disabled) can change.

For Visual Basic 6.0 clients, as illustrated in the syntax above, Value is the default property for its

control, so an explicit reference is not required. In fact, using the implicit reference to the control’s

Value yields better performance. Visual Basic .NET does not permit this type of shortcut, and

therefore, .Value must be explicitly used.

If there are restrictions on the end user’s data entry into the control, then the Microsoft Dynamics SL

Object Model enforces those restrictions.

Attempts to set the Value property, as well as all other property set operations and method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the attempt to set this property, whether the processing comes

from the core Microsoft Dynamics SL kernel, the original application, or any customization of the

application.

Note that the Value property does not necessarily represent the underlying contents of the data field

that the control is bound to, since it always represents what the user can see and change. The

following list discusses the Value property for various types of SIVControl:

 Button — The Value property of the Button functions as it does in standard Visual Basic. It can be

either True or False. Setting it to True fires the Button’s Click event. If the Button is disabled

(Enabled property is False) and the automation client sets its value to True, the button is not

clicked and you will generate an exception.

 Label — The Value property corresponds to the label’s caption.

 SAFCheck — The Value property is True for a checked box and False for an unchecked box. Note

that SAFCheck only supports these two values as opposed to the standard Visual Basic CheckBox

control’s vbChecked, vbUnChecked, and vbGrayed.

Note: Value can only be True or False, regardless of the TrueText or FalseText setting of the control.

 SAFCombo — The Value property corresponds to the contents of the text box in the ComboBox.

You cannot add text that does not already exist as an option in the ComboBox list. Beware that

ComboBox lists do not generally correspond to the exact contents of underlying data fields. If a

Microsoft Dynamics SL customization has disabled a list entry, you will not be able to set the

Value property to that list entry.

 DSLDate — The only format allowed for dates throughout the Microsoft Dynamics SL Object Model

is a String or Variant of the format “MM/DD/YYYY.” All reads will return values in this format. If you

attempt to write the DSLDate Value property with an invalid date format, you will generate an

exception.

 Reference 121

 SAFFloat — You can assign to the Value property any numeric type compatible with a Double type,

or you can assign a String Variant type. However, if it is a string, the string cannot contain any

currency symbols or commas, and if it contains a decimal point, the decimal point must be US-

format decimal float (“.”). In other words, the only legal characters are the digits, the negative sign

(“-”), and the US-format decimal point. Attempting to assign other characters will generate an

exception.

 SAFInteger — You can assign to the Value property any numeric type compatible with an Integer

type, or you can assign a String Variant type. However, if it is a string, the string cannot contain

any currency symbols, commas, or decimal points. In other words, the only legal characters are

the digits and the negative sign (“-”). Attempting to assign other characters will generate an

exception.

 SAFMaskedText — The Value property is a string. If the contents of the string that you attempt to

assign to the SAFMaskedText do not agree with Mask property of the SAFMaskedText control,

then an exception is generated.

 SAFOption — The Value property is Boolean True for selected OptionButtons and False for

unselected OptionButtons.

Note: Value can only be True or False, regardless of the TrueText or FalseText setting of the control.

 Standard Visual Basic and Third-party controls — The Value property exposes the object’s default

property. Not all third-party ActiveX controls and no .Net WinForm controls have a default property.

If Microsoft Dynamics SL Object Model automation code attempts to set the value of a control that

does not support a default property, an exception is raised.

Possible Exceptions

See each control’s reference page for specific error numbers.

See Also

“SIVControl Default Property” topic in Appendix G: Visual Basic .NET-Related Changes, SIVControl

Object

Example (Visual Basic 2005 Client)

Try

 'Assumes that sivApp is an already-instantiated

 'SIVApplication object

 'Note use of visible text of element, not

 'underlying data value

 sivApp.Controls("cTerms").Value = "Net 30"

 'Selecting an Option control from among various

 'members of a Control Array

 sivApp.Controls("cCreditType(1)").Value = True

 'Attempt to assign an SAFFloat control's value

 'using a string-type variant

 'The following line will cause an error, because

 'the string includes forbidden characters --

 'currency symbol, thousands separator, and decimal

 'is not in US format:

 sivApp.Controls("cTotal").Value = "¥1.000.000,00"

 'Attempt to assign a DSLDate control's value

 'using an invalid date format.

 'The following line will cause an error, because

 'the month and day are in the wrong order, and because

 'the year is not four digits long:

 sivApp.Controls("cTerms").Value = "27/03/99"

Catch ex As System.Runtime.InteropServices.COMException

122 Object Model Reference Guide

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Then

 lErrNumber = ex.ErrorCode - vbObjectError

 ElseIf ex.ErrorCode - vbObjectError > 0 Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox("Exception: " + ex.Message, MsgBoxStyle.Exclamation, ex.Source)

End Try

 Reference 123

Value Property (SIVProperty Object)
Represents the contents of a property represented by a SIVProperty object. The Value property is the

default property for a SIVProperty object.

Applies To

SIVProperty object

Syntax

object.Value = newvalue
 object = newvalue (Visual Basic 6.0 clients only)

Remarks

The Value property represents the assigned value of a control’s property.

As illustrated above in the syntax for Visual Basic 6.0 clients, the Value property is the default property

for its SIVProperty object, so an explicit reference is not required. In fact, using the implicit reference

to the SIVProperty’s Value yields better performance. Visual Basic 2005 does not permit this type of

shortcut, and therefore, .Value must be explicitly used.

If there are restrictions on the assignment of this particular property’s value, either from the core

SIVApplication or from any customizations, the Microsoft Dynamics SL Object Model enforces those

restrictions.

The Value of a property that you set in code does not persist beyond the lifetime of the parent

SIVApplication object. In other words, property values are not remembered across sessions.

Attempts to set the Value property, as well as all other property set operations and method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the attempt to set this property, whether the processing comes

from the core Microsoft Dynamics SL kernel, the original application, or any customization of the

application.

Possible Exceptions

An infinite number of possible exceptions can occur when setting a property value, and each control

will have different properties rules. Microsoft strongly recommends careful error trapping around code

that sets property values.

See Also

SIVProperty Object

Example (Visual Basic 6.0 Client)

'Set a property object variable
'to point to a property in a SIVControl's Properties collection
Dim propCurr As SIVProperty
Set propCurr = currCtrl.Properties.Item("BackColor")
propCurr.Value = vbRed

'Or it can be set like this since value is the default property

propCurr = vbRed

'Change a control directly

sivMyApp.Controls("cTotalBalance").Properties.Item("BackColor").Value = vbRed

124 Object Model Reference Guide

 'Or it can be set like this since value is the default property

sivMyApp.Controls("cTotalBalance").Properties.Item("BackColor") =

vbRed

Example (Visual Basic 2005 Client)

Try

 'Set a property object variable

 'to point to a property in a SIVControl's Properties collection

 Dim propCurr As SIVProperty

 propCurr = currCtrl.Properties("BackColor")

 propCurr.Value = VBRUN.ColorConstants.vbRed

 'Change a control directly

 sivMyApp.Controls("cTotalBalance").Properties("BackColor").Value =

VBRUN.ColorConstants.vbRed

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Then

 lErrNumber = ex.ErrorCode - vbObjectError

 ElseIf ex.ErrorCode - vbObjectError > 0 Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0}

Error {1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox("Exception: " + ex.Message, MsgBoxStyle.Exclamation, ex.Source)

End Try

 Reference 125

Visible Property
Controls the physical visibility of the toolbar or the application to the interactive user.

Applies To

SIVToolbar, SIVApplication

Syntax

Object.Visible = Boolean
 Boolean = Object.Visible

The Visible property syntax has these parts:

Part Description

object A SIVApplication or SIVToolbar object.

Boolean A Boolean expression specifying whether the object is visible to the user.

Settings

The settings for Boolean are:

Setting Description

True Object is visible.

False (Default) object is invisible.

Remarks

For the SIVToolbar, a Visible property of True would allow the interactive user to use the toolbar. If you

need to run a completely automated task with no user interaction, the best choice would be to leave

the Visible property at its default value of False.

If you destroy all automation client instances of the SIVToolbar object but without calling the Quit

method of SIVToolbar, then the toolbar automatically becomes visible to the interactive user.

If an interactive user starts Microsoft Dynamics SL while a client automation session is already

running with an invisible instance of SIVToolbar, then the SIVToolbar automatically becomes visible.

Note: Each instance of the SIVApplication object has its own Visible property. This means that you can

control the visibility of the toolbar and the visibility of a Microsoft Dynamics SL screen independently of

each other.

By default the SIVApplication object is invisible (Visible property = False) when it is initialized by the

StartApplication method of the SIVToolbar object. When the SIVApplication object or SIVToolbar object

is invisible, it does not appear on the Windows Taskbar.

If the automation client destroys an SIVToolbar or SIVApplication object before calling the object’s Quit

method, then that object remains running and becomes visible to the user.

Attempts to set the Visible property, as well as all other property set operations and method calls

throughout the Microsoft Dynamics SL Object Model, are synchronous with respect to the automation

client. That is, control does not return to the automation client until the completion of all Microsoft

Dynamics SL processing caused by the attempt to set this property, whether the processing comes

from the core Microsoft Dynamics SL kernel, the original application, or any customization of the

application.

126 Object Model Reference Guide

Possible Exceptions

See Also

SIVApplication Object, SIVToolbar Object

Example

Set sivtbCurrent = New SIVToolbar
sivtbCurrent.Login "CHOMPER", "MSINTL", _
"NWIND", "NDavolio", "yowsa"

dim sivMyApp As SIVApplication

Set sivMyApp = sivtbCurrent.StartApplication("tx\MyApp.exe")

sivtbCurrent.Visible = True

sivMyApp.Visible = True

 Appendix A: Integrating with Microsoft Office 127

Appendix A: Integrating with Microsoft

Office

Since both Microsoft Dynamics SL and the various features of Microsoft Office (such as Microsoft

Word, Excel, Outlook, or PowerPoint) provide COM servers, it is possible to automate Microsoft

Dynamics SL and Microsoft Office in the same COM client code. This makes it possible to tightly

integrate Microsoft Dynamics SL with the features of Microsoft Office.

There are three ways that you can integrate Microsoft Dynamics SL with Microsoft Office:

 Automate Microsoft Dynamics SL and Microsoft Office features from a single stand-alone Visual

Basic client application.

 Automate Microsoft Dynamics SL from within a VBA script in a Microsoft Office feature.

 Microsoft SL SDK programmers only: Automate Microsoft Office features from within a Microsoft

SL SDK application.

The exercise that accompanies this appendix illustrates how to automate the Microsoft Dynamics SL

Object Model from within an Excel VBA script.

For further examples of the integration of Microsoft Office features with standard Microsoft Dynamics

SL screens, see the Microsoft Web site.

Exercise: Integrating Microsoft Dynamics SL with Microsoft Office

The Excel file distributed with this documentation (OMSolomon NWind Customers.xls) contains the

material for this exercise. You will not write code for this exercise. Instead, you will examine the VBA

code and the Excel spreadsheets as described here.

The spreadsheets and VBA script in this file have the following features:

 A main spreadsheet contains named ranges in the form of spreadsheet columns that will hold

customer IDs and company names provided by the sample application 9359600.exe distributed

with this document.

 A secondary spreadsheet uses single-cell named ranges to hold Microsoft Dynamics SL login

context information (server name, system database name, company ID, and user ID) that can be

“remembered” from one spreadsheet session to the next.

 In Excel’s Macro programming environment, note in the Tools | References menu option that a

reference has been set to both the Microsoft Dynamics SL Toolbar and Application object libraries.

 The main VBA script routine is found under the macro named ImportCustomers. Your task in this

exercise is to identify each of the following main tasks performed by this routine:

– Calls a subroutine with accompanying dialog form to log on to the toolbar. The dialog gets

initial information and also stored successful login contexts in the secondary login context

spreadsheet mentioned above.

– Starts the 9350000 application.

– Clears the named spreadsheet ranges for customer ID and company name.

– Loops through all customer records on the application’s main data entity, populating the

spreadsheet ranges with customer IDs and company names respectively.

– Closes down and destroys Application and Toolbar objects.

128 Object Model Reference Guide

 Appendix B: Information for Microsoft SL SDK Programmers 129

Appendix B: Information for Microsoft

SL SDK Programmers

Note: This appendix will be of most interest to those who plan to create Microsoft Dynamics SL

applications with the Microsoft SL SDK.

This appendix presents information that will be useful to Microsoft SL SDK programmers when they

create applications that might be automated through the Object Model, or when they want to do

Object Model automation from within a Microsoft SL SDK application.

The appendix discusses:

 How to disable a Microsoft SL SDK application so that it cannot be automated through the Object

Model.

 How to make a Microsoft SL SDK application be an Object Model client (how to automate other

Microsoft Dynamics SL applications from within a Microsoft SL SDK application).

 How to use a custom object to enhance the basic functionality of the Object Model in a Microsoft

SL SDK application.

Disabling the Object Model for a Microsoft SL SDK Application

If the specifications for the Microsoft SL SDK application that you are writing require that the

application not be automatable, then you can disable the Object Model for client manipulation by

calling the DisableObjectModel statement in the Form_Load of the Microsoft SL SDK application’s

main form. You must make this statement call between the ApplInit and ScreenInit calls in Form_Load.

The documentation for the DisableObjectModel statement contains further details and an example.

Making a Microsoft SL SDK Application Behave as an Object Model Client

You can make your Microsoft SL SDK application behave as a Microsoft Dynamics SL automation

client to another Microsoft Dynamics SL application by following these steps in your Microsoft SL SDK

project:

1. Set a reference (in the Visual Basic Project | References dialog) to the Microsoft Dynamics SL

Application Objects Library.

2. Declare a variable of type SIVApplication. Make sure to use the WithEvents keyword if you want

access to the object’s Message event (note that you cannot use WithEvents in a local declaration,

so in this case you have to declare the object with form-wide or application-wide scope).

3. Set the SIVApplication variable equal to the result of the StartAppAndAutomate function call. The

StartAppAndAutomate function takes arguments that give the name (and, if necessary, the path)

of the application to be automated, as well as any Microsoft Dynamics SL or operating system

errors that were raised in the attempt to initialize the application.

4. Manipulate the newly-instantiated SIVApplication object according to the rules of Microsoft

Dynamics SL Object Model programming.

This technique is useful for drilldowns. If your Microsoft SL SDK application needs to display another

Microsoft Dynamics SL application to the interactive user, you can instantiate an SIVApplication object

for the called application, and then, depending on how much control your original application needs to

keep over the called application, either:

 Set the SIVApplication object’s Visible property to True (which keeps control of the called

application inside your Microsoft SL SDK application) or

 Set the SIVApplication object variable to Nothing, thus exposing the object to the interactive user’s

full control and releasing any control from your original Microsoft SL SDK application.

130 Object Model Reference Guide

Explanation of Custom Objects

Microsoft SL SDK programmers can use a Custom object to provide special functionality to automation

clients that would not normally be available through the Object Model.

A Microsoft SL SDK application must first expose a Custom object to potential automation clients

through a custom class of the application. Automation clients of that particular Microsoft SL SDK

application can then use the Custom object within their code.

Using a Custom Object in an Automation Client

When a Microsoft SL SDK application exposes a custom object through the ExposeCustomObject

function call, then clients of that application can automate the custom object through the

GetCustomObject method of the application’s SIVApplication object.

Getting a Handle to a Custom Object
Before you can work with an application’s custom object, you must obtain a handle to the object by

calling the GetCustomObject method of the SIVApplication object representing the application.

The method returns a variable of type Object. You can then use that object variable to manipulate the

application’s custom object.

If the object returned by the GetCustomObject method is equal to Nothing, then that means that the

particular application does not have a custom object.

Manipulating a Custom Object
You can manipulate an SIVApplication object’s custom object after you get a handle to the custom

object.

In order to effectively manipulate the object, you must know its object structure (methods and

properties). Since you are manipulating a variable of type object, then the custom object is late bound.

That is, the Visual Basic design environment and the compiler do not have the information about the

object’s structure available at design- or compile-time. You therefore have to rely completely on the

documentation of the custom object provided by the Microsoft SL SDK programmer.

Because of the late binding of the custom object in the application client, any syntax errors with the

custom object will therefore not be caught by the Visual Basic compiler and will be generated as

runtime errors in the application. You must therefore thoroughly debug your automation client code for

errors with the custom object syntax.

The following is an example of code that manipulates an SIVApplication object’s custom object.

Example

'Assumes that sivApp is an already-instantiated
'SIVApplication object

 Dim oCustom As Object

 Set oCustom = sivApp.GetCustomObject()

 If oCustom Is Nothing Then

 MsgBox "No Custom Object Available"

 Else

 'manipulate object model members

 oCustom.LoadInfo

 Dim iStatus As Integer

 iStatus = oCustom.Status

 End If

 Appendix C: Limitations 131

Appendix C: Limitations

The following Microsoft Dynamics SL features are either not available or are not fully supported in the

Object Model:

 Customization Manager — It is not possible to create or edit a customization through the Object

Model. However, it is possible to specify customization levels and other options for a toolbar

session from the Object Model.

 DBCreate — This feature is not available through the Object Model.

 DBUpdate — This feature is not available through the Object Model.

 DB Validate and Repair — This feature is not available through the Object Model.

 Events — The Object Model does not handle Microsoft Dynamics SL events, such as Chk, Default,

LineGotFocus, LineChk, Update, New, and others.

 Integrity Checkers — This feature is not available through the Object Model.

 Notes — The Notes/Attachments icon’s functionality for key fields of tables is not accessible

through the Object Model.

 PV property — The PV (possible values) property is accessible through the Object Model but is not

available in the dropdown PV dialog box. However, messages returned to the user interface by PV

validation (such as “item not found”).

 Relative Date/Period — This functionality is not available through the Object Model.

 ROI — You cannot call Report Options Interpreter directly or indirectly through the Object Model.

This prohibition includes using any user interface feature that would trigger the printing of a

report, such as releasing a batch or firing a command button that runs a report. This restriction is

because of the fact that the underlying report engine uses dialogs and other user interface

features that the Object Model client cannot detect.

 Templates — You cannot create or manage templates from the Object Model.

 Transaction Import — This feature is not available from the Object Model. However, you can use

Object Model processing to replace transaction import functionality.

132 Object Model Reference Guide

 Appendix D: Advanced Tasks 133

Appendix D: Advanced Tasks

Working with Troublesome Controls
Microsoft Dynamics SL supports the behavior of all of its SAF-type controls, plus the standard WinForm

Button and Label controls, as advertised in this documentation.

This does not mean that you cannot program with other controls that appear on an application screen

(such as third-party controls or Microsoft controls other than the Button and Label). However,

Microsoft technical support cannot answer questions about these other types of controls or guarantee

their behavior.

Perhaps the thorniest issue that you will run into when programming with non-Microsoft Dynamics SL

controls is the idea of the control’s default property. Recall that your automation client can access a

control’s contents with the syntax:

Myapp.Controls(“ControlName”).Properties(“PropertyName”)

Where of course “ControlName” is the name of the specific control that you are interested in and

“PropertyName” is the name of the property representing the control’s contents. For SAF controls, the

default property of a control is named “Value” and you can always refer to it by default with the

following more abbreviated syntax:

Myapp.Controls(“ControlName”)

This syntax works with many controls besides the SAF controls, as long as each control type has a

default property. For instance, the Visual Basic Label control’s default property is its caption, the

Visual Basic Button’s default is the Value property, and the Visual Basic Scrollbar control’s default is

also its Value property.

However, you cannot be certain that every non-Microsoft Dynamics SL control type that you find in a

Microsoft SL SDK application will have a default property. If you do run into such a control and forget

to use the longer syntax listed in the first example above, then your attempt to use its default property

will generate Object Model error 7560.

When in doubt about whether or not a control has a default property or not, always refer to the desired

property explicitly, as in the first syntax model above.

134 Object Model Reference Guide

 Appendix E: Error Numbers 135

Appendix E: Error Numbers

Note: The values given in the main table for each error number are the decimal value, less the value of

the constant vbObjectError. For a cross-reference with values in hex and decimal and hex values that

include vbObjectError, see the supplementary table at the end of this section.

Error Number Description

2048 XXXX: Non-fatal exception (all Object Model).

Most Likely Cause: A call to the Object Model has triggered a recoverable

Microsoft Dynamics SL error that would normally be displayed to the

interactive user as a message box. The error number is given in XXXX

and can be found in the Messages.csv file. The Message event fires

before this event is raised.

Possible Remedy: You may trap for and ignore this error, since the

Message event either handles the error or allows the default user

response. You may also write logic to react to the condition brought

about by the underlying Microsoft Dynamics SL error whose code is given

by XXXX.

2049 XXXX: Fatal exception (all Object Model).

Most Likely Cause: A call to the Object Model has triggered a non-

recoverable Microsoft Dynamics SL error that would normally be

displayed to the interactive user as a message box. The error number is

given in XXXX and can be found in the Messages.csv file.

Possible Remedy: During development, identify the error given by XXXX

and, if possible, rectify your code so that the error does not happen. If

the error happens in the production application, then you cannot

gracefully recover from the error once it has been triggered. The only

possible reaction when the error occurs at runtime in your compiled

application is to destroy the SIVApplication object (set it to Nothing) and

discontinue processing.

2050 [Internal COM exception] Text of error message (Object Model).

Most Likely Cause: An error unrelated to the Microsoft Dynamics SL

environment has been raised in the internal code of the Object Model.

Possible Remedy: You may attempt to modify your application to react to

this error based on text of error message. However, it is most likely that

the best way to get a resolution to the error is to notify Microsoft

technical support, reporting text of error message.

7500 Login Error: Already Logged In (Login method).

Most Likely Cause: Attempt to call the SIVToolbar’s Login method a

second time.

Possible Remedy: Use error trapping to ignore the second call to login, or

debug your code’s logic to avoid a second call to login.

7501 Login Error: System Database Name is greater than 20 (Login method).

Most Likely Cause: You supplied a SystemDatabaseName argument to

the SIVToolbar’s Login method that was too long.

Possible Remedy: Verify and use the correct system database name. You

might have forgotten to trim a string that had many blanks in it.

7502 Login Error: Incorrect System Database Server Name or System

Database Name (Login method).

Most Likely Cause: You supplied an incorrect

SystemDatabaseServerName or SystemDatabaseName argument to the

SIVToolbar’s Login method, or an incorrect combination of these two

arguments.

Possible Remedy: Verify and use the correct system database server

136 Object Model Reference Guide

Error Number Description

name for the system database that you want to use. One possible

situation in which this error might occur is when you test code in a

particular database context with hard-coded login context values and you

forget to change them when you move the code to a different

environment. Also, make sure that any string value that you pass as

system database or system database server name has any extra blanks

trimmed out of it.

7503 Login Error: Incorrect Company Id, User Id, or Password (Login method).

Most Likely Cause: One of the above arguments to the SIVToolbar’s

Login is incorrect, or the combination is incorrect. You might have a

correct user ID, but the incorrect password, or you might be using a user

ID that only exists in one of several companies, and you are trying to log

on to a company where the user does not exist or the password is

different. You might have forgotten to trim a string that had extra blanks

in it.

Possible Remedy: Verify and use a valid login context. Consider creating

a special user ID that only your automation client uses and that has

sufficient rights to perform all necessary actions. Make sure that any

string value that you pass as company ID, user ID, or password is

correctly trimmed.

7504 Login Error: System Database Does Not Exist (Login method).

Most Likely Cause: You supplied a SystemDatabaseName argument to

the SIVToolbar’s Login method that was incorrect. You may be mistaken

about which system database belongs with which system database

server.

Possible Remedy: Verify and use correct system database server name

for the system database that you want to use. One possible situation in

which this error might occur if you are testing code in a particular

database context with hard-coded login context values and you forget to

change them when you move the code to a different environment. Also

you might have forgotten to trim a string that had blanks in it.

7505 Login Error: Interactive User is Different from Client Login (Login

method).

Most Likely Cause: The interactive user is already logged on to the

workstation, and your automation client is trying to log on with a different

Microsoft Dynamics SL login context.

Possible Remedy: Your automation client’s login context must agree with

the login context of any interactive user who is already logged on to the

same workstation when the automation client attempts to log on.

7506 Not Logged In (Logout method, StartApplication method,

SetBusinessDate method, SetCustomizationLevel method, InitializeMode

property).

Most Likely Cause: You have attempted to manipulate an SIVToolbar

property or call its StartApplication method without first successfully

calling its Login method.

Possible Remedy: Make sure your code calls the Login method. If it does

call the Login method, then you should put error trapping in the code for

errors 7501 through 7505 to detect if there is a problem with the Login

method.

7507 Logout Error: Applications Still Running (Logout method).

Most Likely Cause: You tried to set the call the SIVToolbar object’s

Logout method, but there were SIVApplication objects still running.

Possible Remedy: Make sure all SIVApplication objects have been closed

(with the Quit method) before attempting to call the SIVToolbar’s Logout

method.

7509 Customization Level Error: Applications Running (SetCustomizationLevel

 Appendix E: Error Numbers 137

Error Number Description

method).

Most Likely Cause: You tried to call the SetCustomizationLevel method of

the SIVToolbar object, but there were SIVApplication objects running at

the same time.

Possible Remedy: Make sure all SIVApplication objects have been closed

(with the Quit method) before attempting to call the SIVToolbar’s

SetCustomizationLevel method.

7510 Customization Level Error: Enumeration Selection Error

(SetCustomizationLevel method).

Most Likely Cause: You tried to call the SetCustomizationLevel method of

the SIVToolbar object, but you passed it an invalid level value as the first

argument.

Possible Remedy: Verify the customization level that you passed as the

first argument to the SetCustomizationLevel method. Make sure that you

only use integer values that belong to the enumerated type

sivCustomizationLevel.

7511 Customization Level Error: No Access Rights (SetCustomizationLevel

method).

Most Likely Cause: You tried to call the SetCustomizationLevel method of

the SIVToolbar object, but the current user ID does not have access

rights for setting the customization level.

Possible Remedy: Create or find a user ID with sufficient access rights to

set the customization level, and then have the SIVToolbar object log on

to the database with that user ID before attempting to call the

SetCustomizationLevel method.

7512 Customization Level Error: Specified UserID is invalid

(SetCustomizationLevel method).

Most Likely Cause: You tried to call the SetCustomizationLevel method of

the SIVToolbar object to sivCstLvlOneUser, but the user ID you specified

in the second argument does not exist.

Possible Remedy: Verify the valid user IDs for the current database (or

create a new user ID) and make sure that you are using one of those

user IDs as the second argument to the SetCustomizationLevel method.

7514 Business Date Error: Invalid Date (SetBusinessDate method).

Most Likely Cause: The combination of arguments that you passed to the

SetBusinessDate method of the SIVToolbar object does not specify a

valid date.

Possible Remedy: Verify that you have correctly specified the three

arguments to SetBusinessDate so that they yield a valid date. Some

possible common mistakes in specifying the date are: specifying

February 29th on a year that is not a leap year; specifying the 31st for

months with only 30 days, or the 30th for February; only specifying two

digits for the year (years must always be specified with four digits). Also

note that, regardless of the system’s date settings, the order of the

arguments to SetBusinessDate is always month, day, year.

7516 Start Application Error: Login context may not have rights to run the

application (StartApplication method).

Most Likely Cause: The user ID argument that you supplied when you

called the Login method of the SIVToolbar object at the beginning of the

current session represented a user that did not have sufficient rights to

run this application.

Possible Remedy: Get the system administrator to assign sufficient rights

to the user ID, or create a special user ID that only your automation

client uses and that has sufficient rights.

7517 Start Application Error: User Limit Exceeded (StartApplication method).

Most Likely Cause: The current installation of Microsoft Dynamics SL is

138 Object Model Reference Guide

Error Number Description

licensed for a number of users that is below the logged-on user count

that would obtain if this application were to run.

Possible Remedy: Make sure that fewer users are running applications

when you re-try, or convince management to buy more user licenses for

Microsoft Dynamics SL.

7519 Start Application Error: Unable to start application due to operating

system error: Error Number (StartApplication method).

Most Likely Cause: This error could be raised due to many causes, such

as a temporary problem on the network or some other unforeseen

problem. That is why this particular error contains features a further error

number embedded at the end of the Description property of the Err

object. A very common possible cause of this error would be that you

have passed an invalid path or file name as the argument to the

StartApplication method.

Possible Remedy: If you want to write code that is as robust as possible,

you should have code in your error trap parse out this second error code

and then decide on the appropriate action to take.

7520 Start Application Error: Unable to start application due to fatal error

during form load: Error Number (StartApplication method).

Most Likely Cause: This error can have many causes and so has a more

specific error number embedded at the beginning of the Err.Description

property. Unlike error 7519, however, this error is caused by something

that happens in the Microsoft Dynamics SL application as the application

begins to run, but before the application is fully loaded in memory. For

this type of error, the Microsoft Dynamics SL user interface would

probably display a message box to the user (thus firing the Message

event) or a runtime error would be raised. However, a special situation

occurs before the application has fully loaded in memory, because the

Microsoft Dynamics SL Object Model is not completely initialized at that

point. Therefore, the environment is not yet able to raise every type of

runtime error or fire the Message event.

Possible Remedy: You can check the beginning of the Err.Description

property for the specific error number that would have been raised as a

runtime error or in the Message event, if it were possible to raise the

Message event in this environment.

7521 Start Application Error: Initialize mode is on, but user does not have

rights to run application in Initialize mode (StartApplication method).

Most Likely Cause: The particular user ID with which the toolbar has

logged on does not have Initialize mode rights for the screen that you are

trying to run in the SIVApplication object.

Possible Remedy: Get the system administrator to assign sufficient rights

to the user ID, or create a special user ID that only your automation

client uses and that has sufficient rights.

7522 Quit Error: Automation client is not logged out (Quit method of SIVToolbar

object).

Most Likely Cause: You tried to call the Quit method of the SIVToolbar

object, but the SIVToolbar object is still logged on.

Possible Remedy: Make sure to call the Logout method of the SIVToolbar

object first.

7524 New may be disabled for specified entity, either by the application or

because of access rights (New method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled New on the toolbar.

Possible Remedy: Trap for this error and take appropriate steps.

7525 Invalid Entity String (New, Delete, First Last, Next, Previous,

GetEntityStatus methods).

 Appendix E: Error Numbers 139

Error Number Description

Most Likely Cause: You used an entity string as an argument to one of

the above methods, but the application does not recognize an entity of

that name.

Possible Remedy: Verify the available entity strings for the application. It

may be a simple misspelling, or you may have an untrimmed string

containing extra blanks.

7526 Delete may be disabled for specified entity, either by the application or

because of access rights (Delete method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled Delete on the toolbar.

Possible Remedy: Trap for this error and take appropriate steps.

7528 First may be disabled for specified entity by the application (First

method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled First on the toolbar. Also, the underlying

application may represent control information (such as GL Setup

(01.950.00)) that does not support the navigation buttons.

Possible Remedy: Trap for this error and take appropriate steps.

7530 Last may be disabled for specified entity by the application (Last

method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled Last on the toolbar. Also, the underlying

application may represent control information (such as GL Setup

(01.950.00)) that does not support the navigation buttons.

Possible Remedy: Trap for this error and take appropriate steps.

7532 Next may be disabled for specified entity by the application (Next

method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled Next on the toolbar. Also, the underlying

application may represent control information (such as GL Setup

(01.950.00)) that does not support the navigation buttons.

Possible Remedy: Trap for this error and take appropriate steps.

7534 Previous may be disabled for specified entity by the application.

(Previous method).

Most Likely Cause: The underlying Microsoft Dynamics SL application or

a customization has disabled Previous on the toolbar. Also, the

underlying application may represent control information (such as GL

Setup (01.950.00)) that does not support the navigation buttons.

Possible Remedy: Trap for this error and take appropriate steps.

7537 Value specified has been disabled (Value property of SIVControl object of

type SAFCombo).

Most Likely Cause: Even though the list value that you specified is an

option on this SAFCombo control’s list, that value has been disabled by

the underlying application or customization logic, and you cannot set the

control to that value.

Possible Remedy: Verify that the list value chosen by the automation

client is not disabled. For most robust code, trap for this error in

procedures that assign or read an SAFCombo’s value.

7538 Value specified does not exist (Value property of SIVControl object of type

SAFCombo).

Most Likely Cause: The list value that you are trying to assign or read is

not an option on this SAFCombo control’s list, either in the original

version of the application or in any customization of the list. Both original

and customized list values provide valid values. It is possible, however,

that the automation client is assuming that a customized value is

140 Object Model Reference Guide

Error Number Description

available and either the CustomizationLevel property is incorrect for the

customization to apply, or the assumed customization is not available. It

is also possible that you are trying to assign or read a value that

corresponds to the underlying value in the data field. Instead, you should

always assign a value that corresponds to a list choice that is visible to

the user in the original or customized screen.

Possible Remedy: Verify that the value you are trying to specify exists as

an original value of the list or as a customized value. For most robust

code, always use original, uncustomized list values, which will work

regardless of which customizations are currently applied. Verify that the

value you use in your code for an SAFCombo corresponds to the list entry

seen by the user (such as “Invoice”), and not to the value of the

underlying data field (such as “I”).

7539 Data does not conform to Float format (Value property of SIVControl

object of type SAFFloat).

Most Likely Cause: Automation code has attempted to assign a value to

an SAFFloat control that was either too large or small for a Float value or

that contained string data not formatted for the Float value. If you assign

a string, you can only include numeric characters or the US decimal

place holder (“.”) in the string. Not even thousands separators or

currency symbols are acceptable. Decimal place holders other than US

are not acceptable, regardless of the workstation’s international

settings.

Possible Remedy: Use the Visual Basic Format function (or its equivalent

in other programming environments) wherever possible when you assign

the value of an SAFFloat control. The format string should be similar to

“########.##” without any other formatting characters.

7540 Data does not conform to Integer format (Value property of SIVControl

object of type SAFInteger).

Most Likely Cause: Automation code has attempted to assign a value to

an SAFInteger control that was either too large or small for an Integer

value or that contained string data not formatted for the integer value. If

you assign a string, you can only include numeric characters in the

string. Not even thousands separators, decimal place holders, or

currency symbols are acceptable.

Possible Remedy: Use the Visual Basic Format function (or its equivalent

in other programming environments) wherever possible when you assign

the value of an SAFInteger control. The format string should be similar to

“########” without any other formatting characters.

7541 Data does not match the mask specified (Value property of SIVControl

object).

Most Likely Cause: The SIVControl object’s Mask property has a different

format from the format of the data that you are trying to assign to the

control. You may be trying to assign invalid data types (as specified by

the mask) at one or particular character positions, or an invalid number

of characters. You may be trying to include mask formatting characters

(such as slashes, commas, or dashes) in your assignment.

Possible Remedy: Verify the control’s Mask property and make sure that

it matches the data types of the individual characters that you are trying

to assign and the valid data length specified by the mask. Also make

sure that your assignment does not attempt to include mask formatting

characters. For instance, if a mask specified “###-##-####” then a

correct assignment would be “543681287” and an incorrect assignment

(that would cause this error) would be “543-68-1287” because the

dashes are non-significant formatting characters.

7542 Date format is incorrect or the date is invalid (Value property of

SIVControl object of type DSLDate).

 Appendix E: Error Numbers 141

Error Number Description

Most Likely Cause: Automation code has attempted to assign a value to

a DSLDate control that is either not in US date format, which is

MM/DD/YYYY, or that is an incorrect date, such as 02/29/1999 or

04/31/2004. Only US date format is allowed throughout the Microsoft

Dynamics SL Object Model, regardless of the date format settings of the

workstation.

Possible Remedy: Use the Visual Basic Format function with the

template “MM/DD/YYYY” (or an equivalent solution in other

programming environments) wherever possible when you assign the

value of a DSLDate control. Also check the validity of the date before

attempting to assign it.

7543 Currency ID cannot be set at this time (SetCurrencyIDs method).

Most Likely Cause: You have called the SetCurrencyIDs method, but the

underlying application or customization has disabled the ability to

change the currency ID.

Possible Remedy: Always trap for this error when calling the

SetCurrencyIDs method, and abandon the attempt to set the currency ID

if this error occurs.

7545 Transaction Currency ID is invalid (SetCurrencyIDs method).

Most Likely Cause: The currency ID specified in the first argument of the

SetCurrencyIDs method (TransactionCurrencyID) does not exist in the

currency information of the company where the sivToolbar object is

currently logged on.

Possible Remedy: Either:

Change the currency ID that you pass as the first argument for the

TransactionCurrencyID method to a currency ID that exists in the

company information, or

Make sure that someone adds that currency ID for the companies that

you plan to work with.

To guard against this error happening, devise a way to check for the

existence of a currency ID in the database before calling the

SetCurrencyIDs method.

7547 Intermediate Currency ID is invalid (SetCurrencyIDs method).

Most Likely Cause: The currency ID specified in the second argument of

the SetCurrencyIDs method (IntermediateCurrencyID) does not exist in

the currency information of the company where the sivToolbar object is

currently logged on.

Possible Remedy: Same as remedy for Error 7545.

Note: At present, the IntermediateCurrencyID feature is not implemented

in the Microsoft Dynamics SL Object Model.

7549 Currency View cannot be toggled (SetCurrencyView method).

Most Likely Cause: You called the SetCurrencyView method, but the

underlying application has disabled currency changes.

Possible Remedy: Make sure to trap for this error whenever you call

SetCurrencyView. If the error trap detects this error, then ignore the

attempt to set the currency view.

7553 Data is too long to fit in the field (Value property of any SIVControl).

Most Likely Cause: Data is too long for the format specified through the

control’s Mask property.

Possible Remedy: Verify the control’s Mask property and shorten your

data as needed.

7554 Cannot call back into the Object Model from within the Message event

(Message event).

Most Likely Cause: There is automation code inside an SIVApplication

object’s Message event procedure that makes reference to some

142 Object Model Reference Guide

Error Number Description

member of the Microsoft Dynamics SL Object Model’s SIVApplication

object, such as one of its properties or methods. Any such reference

causes this error, because the Message event is strictly non-re-entrant

with respect to the SIVApplication object, meaning that you cannot make

any calls to the SIVApplication object while the Message event is

running.

Possible Remedy: Remove the offending code that calls the

SIVApplication object. You will have to use logic that performs the

intended action elsewhere in your code (not in the Message event). The

best alternate place to perform such activity would be in a Visual Basic

error trap.

7555 Application is Not Returning an Object Handle, Application May Not Be a

Microsoft SL SDK Application (StartApplication method).

Most Likely Cause: The Microsoft Dynamics SL Object Model was unable

to run and instantiate an object for the application whose path and file

name were given as the argument to the SIVToolbar object’s

StartApplication method.

Possible Remedy: This error might occur because the application was not

created with Microsoft SL SDK. You need to talk to the programmer who

created the Microsoft Dynamics SL application that you are trying to

automate.

7556 Button is disabled (Value property of an SIVControl whose type is

Button).

Most Likely Cause: You have attempted to set the Value property of a

Button, but the Button’s Enabled property is False.

Possible Remedy: Always verify in your code that the Button’s Enabled

property is True before attempting to set its Value property.

7557 Cannot set Option Button to False (SAFOption).

Most Likely Cause: You have assigned a value of False to an SAFOption

control. You can only assign a value of True to SAFOption controls.

Possible Remedy: The way to un-select an Option button is to select a

different Option button in the same Option button group. Therefore, do

not use logic that unselects an SAFOption control, but instead determine

which SAFOption should be selected in place of the one you wish to de-

select. Then assign a value of True to the SAFButton to be selected.

7558 Invalid message response for message number XXXX (any call to Object

Model that fires a Message event).

Most Likely Cause: The code in the Message event procedure has set a

value for the MessageResponse parameter that is not allowed for this

particular MessageNumber.

Possible Remedy: Find out what MessageNumbers (in the Message

event) the invalid value is getting set for, and change your code in the

Message event procedure to be aware of those specific

MessageNumbers so that it either sets a valid MessageResponse value

for them or else ignores them, allowing the default response.

7559 Toolbar cannot be made invisible because the interactive user is logged

in (Visible property of sivToolbar object).

Most Likely Cause: Your code has attempted to set the Visible property of

the sivToolbar object to False while the interactive user is logged on.

Possible Remedy: Trap for this error whenever your code sets the Visible

property of the sivToolbar to False. If you detect this error, then recover

from it by ignoring the attempt to set the Visible property to False.

7560 Control’s default property cannot be accessed (third-party controls).

Most Likely Cause: The third party control whose value you are

attempting to read or set has no Default property (although most third-

party controls have a default property, only Microsoft Dynamics SL’s SAF-

 Appendix E: Error Numbers 143

Error Number Description

type controls are guaranteed to have a Default property).

Possible Remedy: Explicitly name the property when you read or assign

its value, using the following syntactic format:

ControlObject.Properties(“property name”).

7561 Attempt to set number of decimal places greater than number of decimal

places allowed by the control (SAFFloat control).

Most Likely Cause: You have attempted to set the Value property of an

SAFFloat control with a number having a greater precision than the

number of decimals places specified in the SAFFloat’s Decimals

property.

Possible Remedy: Either reduce the number of decimal places that you

are specifying in your value assignment, or make sure that the Decimals

property in the underlying SAFFloat control is large enough to hold a

number of the precision that you are specifying.

7562 Save may be disabled, either by the application or because of access

rights (Save method).

Most Likely Cause: The underlying application or a customization has

disabled the save action.

Possible Remedy: Trap for this error condition, and skip your attempt to

save if you encounter this error.

7563 Object Model disabled by application (StartApplication method of the

SIVApplication object).

Most Likely Cause: The underlying Microsoft SL SDK application has

disabled the Object Model by calling the DisableObjectModel api

statement.

Possible Remedy: The underlying application must be re-compiled

without the call to DisableObjectModel.

7568 Currency Error: Invalid sivCurrencyView enumeration value.

7569 The value of disabled SAF controls cannot be set.

144 Object Model Reference Guide

Cross-Reference Between Various Error-Numbering

Schemes

The first two columns list the constant value vbObjectError (-2147221504 decimal or 80040000 hex)

stripped out. The third and fourth columns contain decimal and hex versions of the same two values,

but without vbObjectError stripped out.

Decimal -

vbObjectError

Hex -

vbObjectError

Decimal

(includes vbObjectError)

Hex

(includes vbObjectError)

2048 800 -2147219456 80040800

2049 801 -2147219455 80040801

2050 802 -2147219454 80040802

7500 1D4C -2147214004 80041D4C

7501 1D4D -2147214003 80041D4D

7502 1D4E -2147214002 80041D4E

7503 1D4F -2147214001 80041D4F

7504 1D50 -2147214000 80041D50

7505 1D51 -2147213999 80041D51

7506 1D52 -2147213998 80041D52

7507 1D53 -2147213997 80041D53

7508 1D54 -2147213996 80041D54

7509 1D55 -2147213995 80041D55

7510 1D56 -2147213994 80041D56

7511 1D57 -2147213993 80041D57

7512 1D58 -2147213992 80041D58

7513 1D59 -2147213991 80041D59

7514 1D5A -2147213990 80041D5A

7515 1D5B -2147213989 80041D5B

7516 1D5C -2147213988 80041D5C

7517 1D5D -2147213987 80041D5D

7518 1D5E -2147213986 80041D5E

7519 1D5F -2147213985 80041D5F

7520 1D60 -2147213984 80041D60

7521 1D61 -2147213983 80041D61

7522 1D62 -2147213982 80041D62

7523 1D63 -2147213981 80041D63

7524 1D64 -2147213980 80041D64

7525 1D65 -2147213979 80041D65

7526 1D66 -2147213978 80041D66

7527 1D67 -2147213977 80041D67

7528 1D68 -2147213976 80041D68

7529 1D69 -2147213975 80041D69

7530 1D6A -2147213974 80041D6A

7531 1D6B -2147213973 80041D6B

7532 1D6C -2147213972 80041D6C

7533 1D6D -2147213971 80041D6D

 Appendix E: Error Numbers 145

Decimal -

vbObjectError

Hex -

vbObjectError

Decimal

(includes vbObjectError)

Hex

(includes vbObjectError)

7534 1D6E -2147213970 80041D6E

7535 1D6F -2147213969 80041D6F

7536 1D70 -2147213968 80041D70

7537 1D71 -2147213967 80041D71

7538 1D72 -2147213966 80041D72

7539 1D73 -2147213965 80041D73

7540 1D74 -2147213964 80041D74

7541 1D75 -2147213963 80041D75

7542 1D76 -2147213962 80041D76

7543 1D77 -2147213961 80041D77

7544 1D78 -2147213960 80041D78

7545 1D79 -2147213959 80041D79

7546 1D7A -2147213958 80041D7A

7547 1D7B -2147213957 80041D7B

7548 1D7C -2147213956 80041D7C

7549 1D7D -2147213955 80041D7D

7550 1D7E -2147213954 80041D7E

7551 1D7F -2147213953 80041D7F

7552 1D80 -2147213952 80041D80

7553 1D81 -2147213951 80041D81

7554 1D82 -2147213950 80041D82

7555 1D83 -2147213949 80041D83

7556 1D84 -2147213948 80041D84

7557 1D85 -2147213947 80041D85

7558 1D86 -2147213946 80041D86

7559 1D87 -2147213945 80041D87

7560 1D88 -2147213944 80041D88

7561 1D89 -2147213943 80041D89

7562 1D8A -2147213942 80041D8A

7563 1D8B -2147213941 80041D8B

7564 1D8C -2147213940 80041D8C

7565 1D8D -2147213939 80041D8D

7566 1D8E -2147213938 80041D8E

7567 1D8F -2147213937 80041D8F

7568 1D90 -2147213936 80041D90

7569 1D91 -2147213935 80041D91

7570 1D92 -2147213934 80041D92

7571 1D93 -2147213933 80041D93

7572 1D94 -2147213932 80041D94

7573 1D95 -2147213931 80041D95

7574 1D96 -2147213930 80041D96

7575 1D97 -2147213929 80041D97

7576 1D98 -2147213928 80041D98

146 Object Model Reference Guide

Decimal -

vbObjectError

Hex -

vbObjectError

Decimal

(includes vbObjectError)

Hex

(includes vbObjectError)

7577 1D99 -2147213927 80041D99

7578 1D9A -2147213926 80041D9A

7579 1D9B -2147213925 80041D9B

7580 1D9C -2147213924 80041D9C

7581 1D9D -2147213923 80041D9D

7582 1D9E -2147213922 80041D9E

7583 1D9F -2147213921 80041D9F

7584 1DA0 -2147213920 80041DA0

7585 1DA1 -2147213919 80041DA1

7586 1DA2 -2147213918 80041DA2

7587 1DA3 -2147213917 80041DA3

7588 1DA4 -2147213916 80041DA4

7589 1DA5 -2147213915 80041DA5

7590 1DA6 -2147213914 80041DA6

7591 1DA7 -2147213913 80041DA7

7592 1DA8 -2147213912 80041DA8

7593 1DA9 -2147213911 80041DA9

7594 1DAA -2147213910 80041DAA

7595 1DAB -2147213909 80041DAB

7596 1DAC -2147213908 80041DAC

7597 1DAD -2147213907 80041DAD

7598 1DAE -2147213906 80041DAE

7599 1DAF -2147213905 80041DAF

7600 1DB0 -2147213904 80041DB0

 Appendix F: Application Browser 147

Appendix F: Application Browser
You can use the Microsoft Dynamics SL Application Browser to quickly get information about control

and property names as you develop scripts to automate applications. To open the browser, double-

click SIVAPPBROWSER.exe in \Program Files\Microsoft Dynamics\SL\Applications.

The application browser uses the Microsoft Dynamics SL Object Model for all interaction with the

application or the Microsoft Dynamics SL system. This helps ensure that the application browser will

always “see” application information from the point of view of your automation clients.

Logging on with the Browser

Figure 1: Login window

When the application browser starts, the first thing that you see is the Login dialog box.

You must enter the necessary information to log on to the database needed to run the application that

you want to examine. This information consists of the same parameters needed for the Login method

of the SIVToolbar object.

Login (Button)

Click Login when you are ready to attempt to log on. If the logon fails, a message appears informing

you of the logon failure. After dismissing the failure message, you can try again.

If the logon is successful, then you are able to proceed to browse Microsoft Dynamics SL applications.

Cancel (Button)

Cancel shuts down the logon dialog and close the application browser.

148 Object Model Reference Guide

Choosing an Application to Browse

Figure 2: File window

When you first open the browser, it is blank. You must choose an application to browse before you can

view any information.

To browse an application, you can click Browse Application () on the toolbar or select the Browse

Application option from the file menu. A dialog box opens, asking you to find the executable that you

want to browse. Enter the directory and file name (this is the same format as required by the argument

to the StartApplication method of the SIVToolbar object.) You can also choose the executable by

pressing Browse, which opens the File Open dialog box.

Once you have chosen the executable to browse, you also specify the customization level to start the

application in. When you then click Ok after choosing the customization level, the browser starts the

application and fills in the left pane with all of the application’s control names. If you decide not to

proceed with the selected executable after you choose the customization level, click Cancel.

Figure 3: Browse another application window

You can also select previously browsed applications from the file menu. The file menu shows the last

four applications browsed.

Once you have selected an application to browse, its executable name appears in the title bar of the

browser.

 Appendix F: Application Browser 149

Left and Right Browser Panes

Figure 4: Application Browser window

The pane on the left side of the Application Browser window contains the names of all of the controls

that are available to the automation client. The control type (identical to the value of the control’s

ControlType property) is in parenthesis after the control name.

When the user selects one of the control names, properties of the control that are available to the

automation client are displayed in the pane on the right. This information is for display only.

Exercise: Browsing the Sample Application
For this exercise, you do not need to run the sample application.

1. Run the application SIVAppBrowser.exe under the main Microsoft Dynamics SL directory (the

directory where Parent is installed). Complete the necessary login information to log on to

Microsoft Dynamics SL.

2. Under the application’s File menu, choose an application to browse.

3. When the target application runs, examine the two panes in the browser.

4. Also notice that the application screen becomes visible. If you pause the mouse over a control on

the application screen, you will see the control’s FieldName property in the ToolTip that appears.

150 Object Model Reference Guide

 Appendix G: Visual Basic .NET-Related Changes 151

Appendix G: Visual Basic .NET-Related

Changes

Programming Interface Changes

Programmatic References

The public interface to the Microsoft Dynamics SL Object Model is now contained in the assembly

Microsoft.Dynamics.SL.ObjectModel.dll. In the past, Object Model client code typically needed two

references in order to access the Microsoft Dynamics SL Object Model:

 Parent.exe

 Swimapi.dll

Now, these two references must be replaced. For unmanaged clients (Visual Basic 6.0), use the

reference, Microsoft.Dynamics.SL.ObjectModel.tlb, which can be found in the Program Files folder

under Common Files\Microsoft Shared\DynamicsSL:

Figure 5: References – VBObjectModelClient project (Visual Basic 2008)

152 Object Model Reference Guide

Figure 6: References – VBObjectModelClient project (Visual Basic 6)

Microsoft.Dynamics.SL.ObjectModel.tlb is a COM callable wrapper (CCW) that permits unmanaged

clients to call code in the managed .dll, Microsoft.Dynamics.SL.ObjectModel.dll. This file is created by

the .NET Assembly Registration Tool (Regasm.exe). This will permit the Microsoft Dynamics SL Object

Model to support both Visual Basic 6.0 and .NET clients.

For .NET clients, include a reference to the assembly Microsoft.Dynamics.SL.ObjectModel, which can

be found in the Global Assembly Cache. The physical file name of this assembly is

Microsoft.Dynamics.SL.ObjectModel.dll, and is located in the Program Files folder under Common

Files\Microsoft Shared\DynamicsSL.

Along with changing references, any code that specifies a fully-qualified type name, like

Parent.SIVToolbar

SWIMAPI.SIVApplication

must be modified to reflect the new library name. Include the following line in all of your source files

and simply remove the library qualification:

Imports Microsoft.Dynamics.SL.ObjectModel

or, use fully-qualified type names:

Microsoft.Dynamics.SL.ObjectModel.SIVToolbar

Microsoft.Dynamics.SL.ObjectModel.SIVApplication

Enumerations for Unmanaged (Visual Basic 6.0) Clients Only

When Microsoft.Dynamics.SL.ObjectModel.tlb is created by Regasm, all enumerations are converted

using the following pattern:

<enum name>_<enum_value>

Listed below are enumerations for unmanaged Visual Basic 6.0 clients and their Visual Basic 2005

equivalents:

Enumerations Visual Basic 2005 equivalents

sivRecFndNotFound sivRecordFound_sivRecFndNotFound

sivRecFndFound sivRecordFound_sivRecFndFound

sivMsgOk sivMessageType_sivMsgOk

sivMsgOkCancel sivMessageType_sivMsgOkCancel

sivMsgAbortRetryIgnore sivMessageType_sivMsgAbortRetryIgnore

sivMsgYesNoCancel sivMessageType_sivMsgYesNoCancel

 Appendix G: Visual Basic .NET-Related Changes 153

Enumerations Visual Basic 2005 equivalents

sivMsgYesNo sivMessageType_sivMsgYesNo

sivMsgRetryCancel sivMessageType_sivMsgRetryCancel

sivMsgRspOk sivMessageResponse_sivMsgRspOk

sivMsgRspCancel sivMessageResponse_sivMsgRspCancel

sivMsgRspAbort sivMessageResponse_sivMsgRspAbort

sivMsgRspRetry sivMessageResponse_sivMsgRspRetry

sivMsgRspIgnore sivMessageResponse_sivMsgRspIgnore

sivMsgRspYes sivMessageResponse_sivMsgRspYes

sivMsgRspNo sivMessageResponse_sivMsgRspNo

sivMsgRspClose sivMessageResponse_sivMsgRspClose

sivCurrencyViewBase sivCurrencyView_sivCurrencyViewBase

sivCurrencyViewTransaction sivCurrencyView_sivCurrencyViewTransaction

sivEntStatusInserted sivEntityStatus_sivEntStatusInserted

sivEntStatusUpdated sivEntityStatus_sivEntStatusUpdated

sivEntStatusNotChanged sivEntityStatus_sivEntStatusNotChanged

Default Properties

The concept of a default property on a class is not supported in .NET, unless the property is indexed.

At first glance, you might be tempted to think code like the following will continue to work:

Dim solomonToolBar As Microsoft.Dynamics.SL.ObjectModel.SIVToolbar

solomonToolBar = New Microsoft.Dynamics.SL.ObjectModel.SIVToolbar

solomonApp = solomonToolBar.StartApplication("SomApp.exe")

solomonApp.Controls("someCtrl") = ControlValue.Text

However, solomonApp.Controls("someCtrl") is actually shorthand for

solomonApp.Controls.Item("someCtrl"). Item is the default property of the type SIVControls (which is a

collection, and therefore, an indexed property) and is declared to be of type SIVControl. In our

example, Item(index) represents an SIVControl instance, but since SIVControl cannot have a default

property, the code solomonApp.Controls("someCtrl") or solomonApp.Controls.Item("someCtrl") is not

equivalent to solomonApp.Controls("someCtrl").Value. In the example above, to set the value of the

SIVControl, you should use:

solomonApp.Controls("someCtrl").Value = ControlValue.Text

For managed clients of the Microsoft Dynamics SL Object Model, the old shortcuts of assuming default

properties will no longer work. However, for unmanaged clients the shortcut syntax will continue to

work since the classes containing collections (SIVControls and SIVProperties) are attributed specifying

IDispatch (late-binding only). At runtime, this will permit the shortcut syntax to be supported but only

for unmanaged client code.

SIVControl Default Property

Under Visual Basic 6.0, each control had a default property. For example, Caption was the default

property of a Label control. A label's Caption could be changed by simply setting a label variable to

some string value, like the following:

Label = "Some New Caption"

The Microsoft Dynamics SL Object Model followed the same convention, allowing the setting of a

SIVControl object directly:

Dim sivLabel as SIVControl

sivLabel = solomonApp.Controls("lmodule")

154 Object Model Reference Guide

sivLabel = "Some New Caption"

Since a label had a default property of Caption, the Object Model understood the developer’s intent

and permitted the shortcut.

To allow backward compatibility, the Microsoft Dynamics SL Object Model will permit the developer to

set an SIVControl default property (using the explicit .Value syntax for managed clients as described in

“Default Properties”) on the former set of Visual Basic 6.0 controls, such as Label, Form, Button, etc.,

which are known to Object Model, and on COM controls that specify a default property. So, this code

will continue to work:

Dim sivLabel as SIVControl

sivLabel = solomonApp.Controls("lmodule")

sivLabel.Value = "Some New Caption"

For new WinForm controls, there are no default properties. Therefore, the Object Model cannot gauge

the developer’s intent and cannot permit this shortcut. If you attempt the shortcut, system message

7560 will be returned to the Object Model client. To work around this issue, be specific about the

property to set, rather than attempting the default property shortcut.

Deterministic Freeing of SIVToolbar and SIVApplication Objects

Since the Microsoft Dynamics SL Object Model classes are now written in Visual Basic .NET, setting a

variable of one of these types to Nothing will not cause an immediate cleanup of the Object Model's

COM resources to occur as it did previously. The resource will stay in memory until the .NET garbage

collector is run. This means, for example, that an application will continue to run even if an

SIVApplication variable is set to Nothing.

To get immediate cleanup of the Object Model resource, call the .Dispose method. This is the

preferred method for utilizing the disposable behavior implemented on all Microsoft Dynamics SL

Object Model classes. All classes now implement the IDisposable interface, and therefore, support

calling a publicly-exposed Dispose method. Here is a code sample that illustrates calling the Dispose

method:

solomonToolBar.Dispose()

solomonToolBar = Nothing

Dispose frees any COM resources and internal memory still held by the Object Model and performs the

type of cleanup that was formerly done by setting the variable to Nothing. Note that the object will stay

in memory until garbage collection completes, but since Dispose has already freed all critical

resources, the small amount of memory held by the object reference is trivial and can stay in memory

until the garbage collection process runs.

Error Handling

Unstructured error handling (that is, the "On Error" method of error handling) is still supported in Visual

Basic .NET. However, structured error handling (exception handling) is now available and can be used

in managed Microsoft Dynamics SL Object Model clients. An exception raised by the Object Model will

be of type System.Runtime.InteropServices.COMException. This type of exception includes an

ErrorCode, which is analogous to the Err object's Err.Number field. Here is the mapping between the

Err Object and the System.Runtime.InteropServices.COMException:

Visual Basic 6.0 Visual Basic 2005

Err.Number ComException.ErrorCode

Err.Description COMException.Message

Err.Source COMException.Source

The following example converts legacy unstructured error handling to structured exception handling:

 Appendix G: Visual Basic .NET-Related Changes 155

Visual Basic 6.0 Client

On Error Resume Next

sivProperties("Name").Value = "TryToChangeNameProperty"

If Err.Number <> 0 Then

Dim lErrNumber As Integer

If InStr(Err.Source, "Solomon") <> 0 Then

 lErrNumber = Err.Number - vbObjectError

ElseIf Err.Number - vbObjectError > 0 Then

 lErrNumber = Err.Number - vbObjectError

Else

 lErrNumber = Err.Number

End If

Call MsgBox("Error number #" + Str(lErrNumber) + ": " + Err.Description,

MsgBoxStyle.Exclamation, Err.Source)

End If

156 Object Model Reference Guide

Visual Basic 2005 Client

Try

 sivProperties("Name").Value = "TryToChangeNameProperty"

Catch ex As System.Runtime.InteropServices.COMException

 Dim lErrNumber As Integer

 If ex.Source.Contains("Solomon") = True Or ex.ErrorCode - vbObjectError > 0

Then

 lErrNumber = ex.ErrorCode - vbObjectError

 Else

 lErrNumber = ex.ErrorCode

 End If

 Select Case lErrNumber

 ‘ Check for specific error messages here

 ‘ Default message display

 Case Else

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Error

{1}", ex.Source, lErrNumber.ToString()))

 End Select

Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Exclamation, String.Format("{0} Exception",

ex.Source))

End Try

 Appendix G: Visual Basic .NET-Related Changes 157

Support for WinForm Controls
The Microsoft Dynamics SL Object Model supports WinForm Label and Button controls, which take the

place of the Visual Basic Label and CommandButton controls that were available in earlier releases.

Label Properties

The following table lists Label properties that were available in earlier releases of the Microsoft

Dynamics SL Object Model. It indicates whether or not the property is supported in the current release

and lists the .NET equivalent to it, if applicable.

For more information, see the MSDN article, "Label Control Changes in Visual Basic .NET.”

Label property name

Supported/not supported in Visual

Basic 2005

Alignment Supported; maps to TextAlign,

ContentAlignment enum

Appearance Not supported

AutoSize Supported

BackColor Supported

BackStyle Not supported

BorderStyle Supported; maps to BorderStyle

enum

Caption Supported; maps to Text

ControlType Supported

DataField Not supported

DataSource Not supported

DragIcon Not supported

DragMode Not supported

Enabled Supported

Font Supported; use SIVFont instead of

IFontDisp

ForeColor Supported

Height Supported

Index Not supported

Left Supported

LinkItem Not supported

LinkMode Not supported

LinkTimeout Not supported

LinkTopic Not supported

MouseIcon Not supported

MousePointer Supported; maps to Cursors class

Name Supported

OIeDragMode Not supported

OleDropMode Not supported

RightToLeft Supported; maps to RightToLeft

enum

TabIndex Supported

Tag Supported

http://msdn.microsoft.com/en-us/library/9hwzeyc9(v=VS.71).aspx

158 Object Model Reference Guide

Label property name

Supported/not supported in Visual

Basic 2005

ToolTipText Not supported

Top Supported

UseMnemonic Supported

Visible Supported

WhatsThisHelpID Not supported

Width Supported

WordWrap Not supported

CommandButton Properties

The following table lists CommandButton properties that were available in earlier releases of the

Microsoft Dynamics SL Object Model. It indicates whether or not the property is supported in the

current release and lists the .NET equivalent to it, if applicable.

Note: CommandButton maps to Button in the current of Microsoft Dynamics SL release.

For more information, see the MSDN article, “CommandButton Control Changes in Visual Basic.NET.”

CommandButton property name

Supported/not supported in Visual

Basic 2005

Appearance Not supported

BackColor Supported

Cancel Supported; maps to

Form.CancelButton

Caption Supported; maps to Text

ControlType Supported

Default Supported; maps to

Form.AcceptButton

DisabledPicture Not supported

DownPicture Not supported

DragIcon Not supported

DragMode Not supported

Enabled Supported

Font Supported; use SIVFont instead of

IFontDisp

Height Supported

HelpContextID Not supported

Index Not supported

Left Supported

MaskColor Not supported

MouseIcon Not supported

MousePointer Supported; maps to Cursors class

Name Supported

OleDropMode Not supported

Picture Not supported

RightToLeft Supported; maps to RightToLeft

enum

http://msdn.microsoft.com/en-us/library/66817acc(v=vs.71)

 Appendix G: Visual Basic .NET-Related Changes 159

CommandButton property name

Supported/not supported in Visual

Basic 2005

Style Not supported

TabIndex Supported

TabStop Supported

Tag Supported

ToolTipText Not supported

Top Supported

UseMaskColor Not supported

Value Supported; setting True maps to

action raising Click handler

Visible Supported

WhatsThisHelpID Not supported

Width Supported

Support for Remaining WinForm Controls

The following table lists "standard controls" that were supported in Visual Basic 6.x and their Visual

Basic .NET (WinForm) equivalents. For more information, see the MSDN article, “Differences Between

Visual Basic 6.0 and .NET Controls.”

Visual Basic 6.0 Standard

Controls Equivalent .NET WinForm Controls

CheckBox CheckBox

ComboBox ComboBox

CommandButton Button

Data

N/A

Data binding is completely different

in Visual Basic .NET.

DirListBox N/A

Replaced by OpenFileDialog control.

During conversion, it will be

replaced by VB6.DirListBox for

compatibility.

DriveListBox

N/A

Replaced by OpenFileDialog control.

Replaced by VB6.DriveListBox

during conversion for compatibility.

FileListBox N/A

Replaced by OpenFileDialog control.

During conversion,it will be

replaced by VB6.FileListBox for

compatibility.

Form Form

Frame GroupBox

HScrollBar HScrollBar

Image N/A

Use the PictureBox control to

display a single image.

ImageList ImageList

Label Label

http://msdn2.microsoft.com/en-us/library/ms973208.aspx
http://msdn2.microsoft.com/en-us/library/ms973208.aspx

160 Object Model Reference Guide

Visual Basic 6.0 Standard

Controls Equivalent .NET WinForm Controls

Line N/A

You will now use a class in the .NET

CLR to draw a line.

ListBox ListBox

OLE N/A

OptionButton RadioButton

Picture PictureBox

Shape N/A

You will now use a class in the .NET

Common Language Runtime (CLR)

to draw shapes.

TextBox TextBox

VscrollBar VScrollBar

The new list of standard controls available to .NET-connected applications is much larger than the

finite list available to Visual Basic 6.0 applications. Although not explicitly documented as supported,

the remaining WinForm controls will be contained in the SIVControls collection. As with Label and

Button, .NET reflection is used to obtain the list of properties found in the SIVProperties collection,

owned by each SIVControl instance. In general, simple properties such as Top, Left, Enabled, Visible,

and Tag should all work in the same fashion as they did in Visual Basic 6.0. New properties added for

Visual Studio 2005 may or may not work, depending on the complexity of the property, and should be

used at the risk of the developer.

Listed below are the property types that are supported by the Microsoft Dynamics SL Object Model.

Enum properties for .NET will be supported if the underlying type of the enum is one of the simple

types.

Property types supported by Microsoft Dynamics SL

System.Boolean

System.Byte

System.Char

System.DateTime

System.Decimal

System.Double

System.Drawing.Color — Maps to OLE color (see description below)

System.Drawing.Font — Maps to SIVFont class (see description below)

System.Int16

System.Int32

System.Int64

System.SByte

System.Single

System.String

System.UInt16

System.UInt32

System.UInt64

 Appendix G: Visual Basic .NET-Related Changes 161

Caption Support
If a control supports the Text property, Caption will be added to the list of properties and mapped to

Text by the property get/set logic in order to maintain backward compatibility.

Tag Support
The Tag property will be supported, even though it is an Object type. Most legacy code will set Tag to

simple types, so in most cases, getting and setting the Tag property should continue to work.

Color Support
Client code will not pass System.Drawing.Color values to the Microsoft Dynamics SL Object Model. The

Object Model will translate System.Drawing.Color to and from the numeric equivalent used in COM

programming. Current Object Model clients should already be using numeric values to set and get

color values.

Font support
Client code will not pass System.Drawing.Font values to the Microsoft Dynamics SL Object Model. Font

properties will be represented as an SIVFont class. This contains an equivalent interface to the

StdFont class, or the IFontDisp interface, from stdole.tlb. Currently, the Microsoft Dynamics SL Object

Model client code could retrieve this interface via the Font property and then set the following

individual properties:

 Name

 Size

 Bold

 Italic

 Underline

 Strikethrough

 Weight (not supported in .NET)

 Charset

Example

' set the current control's FontBold to True

Dim fontProperty As SWIMAPI.SIVProperty

Dim fontObj As stdole.IFontDisp

Set fontProperty = currentCtrl.Properties.Item("Font")

Set fontObj = fontProperty.Value

fontObj.Bold = True

In the same fashion, Microsoft Dynamics SL Object Model 7.0 code can retrieve the Font property

directly, but in this case, the instance is of type Microsoft.Dynamics.SL.SIVFont. This instance can

used to set any of the properties listed above.

Example

 ' set the current control's FontBold to True (longhand code)

 Dim currentCtrl As SIVControl

 currentCtrl = sivMyApp.Controls("cAutoRefNbr")

 Dim fontProperty As Microsoft.Dynamics.SL.ObjectModel.SIVProperty

162 Object Model Reference Guide

 Dim fontObj As Microsoft.Dynamics.SL.ObjectModel.SIVFont

 fontProperty = currentCtrl.Properties.Item("Font")

 fontObj = fontProperty.Value

 fontObj.Bold = True

 ' set the current control's FontBold to True (shorthand code)

 sivMyApp.Controls("cAutoRefNbr").Properties.Item("Font").Value.Bold = True

Support for COM Controls
The logic for determining the list of SIVProperties for COM (Active-X) controls remains unchanged in

the current Microsoft Dynamics SL Object Model. The property list is constructed by iterating standard

COM interfaces. See “Label Properties” and “CommandButton Properties” for more information.

Custom Object Support
Two primary scenarios will occur when you are using Custom Objects:

 Scenario 1 — Developer-defined COM object embedded in application

Under Visual Basic 6.0, the application must be built as an ActiveX EXE project. The class that the

application wishes to expose as a custom object must be marked PublicNotCreateable.

When this application is converted to Visual Basic 2005, the class is converted to a .NET class.

ExposeCustomObject cannot be called on an instance of this class unless the CLR thinks it is a

COM class. Placing the ComVisible(True) attribute on the class declaration will suffice to keep

everything working as before.

Sample

clsVBTObjectModelApp.cls.vb

Option Strict Off

Option Explicit On

Imports System.Runtime.InteropServices

<ComVisible(True)> _

Public Class clsVBTObjectModelApp

Private m_Status As Short

Public Event Alert()

Public Sub SignalDone()

RaiseEvent Alert()

End Sub

Public Property ObjStatus() As Short

Get

ObjStatus = m_Status

End Get

Set(ByVal Value As Short)

 Appendix G: Visual Basic .NET-Related Changes 163

m_Status = Value

End Set

End Property

Public Sub New()

MyBase.New()

End Sub

End Class

Declaration, and instantiation, of class in developer code

Private WithEvents m_CustomObject As New clsVBTObjectModelApp

Call to ExposeCustomObject

Call ExposeCustomObject(m_CustomObject)

 Scenario 2 — Call ExposeCustomObject on an ActiveX control that is contained in the project

The application calls ExposeCustomObject passing an ActiveX control that is contained within

application program. This scenario will continue to work as is, and will require no change by the

developer of the application.

164 Object Model Reference Guide

 Glossary of Terms 165

Glossary of Terms

automation client

A Windows application that uses objects provided by an Automation server. This documentation tells

you how to write Automation clients that use the Microsoft Dynamics SL Object Model as an

Automation Server.

automation server

A Windows application that provides objects for other applications (known as Automation clients) to

manipulate. This documentation tells you how to write Automation clients that use the Microsoft

Dynamics SL Object Model as an Automation server.

base currency

The currency into which all transactions are translated for purposes of financial statements, reporting,

and closings. Every Microsoft Dynamics SL installation specifies an unchangeable base currency.

Basic Script Language

Microsoft Dynamics SL’s Visual Basic-like internal scripting language; also referred to as BSL.

company ID

One of several possible entities for which a particular Microsoft Dynamics SL installation maintains

accounting information. The company ID is required as part of the Microsoft Dynamics SL login

context.

component

A program that provides objects designed according to the COM specification. The Microsoft Dynamics

SL Object Model includes a toolbar and an application component.

component object model

A general standard for implementing objects in a computing environment; also referred to as COM.

customization level

The type of customization that will run for Microsoft Dynamics SL applications under a particular

session of the Microsoft Dynamics SL toolbar. Customization level types include, Standard (no

customizations), All Users, One User, and Self.

data entity

A string that a Microsoft Dynamics SL application uses to refer to one of the record sets that it

provides to the user. You need to use this string to perform certain operations on the data, such as

navigation. See data level.

data level

An integer value that refers to what is known in the Microsoft Dynamics SL Object Model as data

entity. This integer value is not available through the Microsoft Dynamics SL Object Model. Instead,

you must use the string referring to the data entity.

display currency

The currency in which the current transaction on a Microsoft Dynamics SL screen is displayed,

regardless of whether or not that currency is the current transaction currency or not. The interactive

user may choose to toggle the display of all amounts on a screen between the current transaction

currency and the system’s base currency. For example, if a sales order is in Polish Zlotys (which would

mean that the transaction currency for this sales order is Zlotys), but the system’s base currency is in

166 Object Model Reference Guide

U.S. dollars, the user could choose to view the screen either in transaction currency (Zlotys) or base

currency (dollars).

entity

See data entity.

interactive development environment

In Visual Basic development, this term refers to the desktop environment that a programmer uses to

work with programs; also referred to as IDE.

Initialize mode

A state of the toolbar that allows users with the proper rights to open applications and make changes

to fields that are normally for display only.

instance

An object that has been created from a class type and that is pointed to by an object variable of that

type. In Microsoft Dynamics SL Object Model programming, you use instances of SIVApplication and

SIVToolbar objects. See instantiate.

instantiate

The act of initializing an instance of an object variable, such as an SIVToolbar or SIVApplication object.

interactive user

The end user of a Microsoft Dynamics SL application, as opposed to the automation client.

level

See data entity, data level, and customization level.

login context

Necessary Microsoft Dynamics SL-specific information about Microsoft Dynamics SL workstation

session that is being run by the currently logged-on interactive user or automation client. Login context

includes information about the system database, the system database server, the company ID, the

user ID, and the password. This information must be furnished by the interactive user on the login

screen or by the automation client when calling the Login method of the SIVToolbar object.

Microsoft Dynamics SL Software Development Kit

A set of software development tools that supplement Visual Basic and allow programmers to develop

Microsoft Dynamics SL executables; also referred to as Microsoft SL SDK.

Microsoft SL SDK application

An application written with the Microsoft SL SDK. All Microsoft Dynamics SL executables are

Microsoft SL SDK applications. The Microsoft Dynamics SL Object Model’s main purpose is to

allow you to manipulate Microsoft SL SDK applications. A Microsoft SL SDK application has

automatic awareness of the toolbar and of Microsoft Dynamics SL API routines.

Microsoft SL SDK developer

A programmer who uses the Microsoft SL SDK library to create Microsoft Dynamics SL applications.

The Microsoft SL SDK developer is not the main audience for this documentation, but rather the

programmer who wants to use non-Microsoft Dynamics SL tools to manipulate Microsoft Dynamics SL

applications.

object model

The set of all members (properties, events, and methods) of a COM component, including information

about their behavior and relationship to each other. In the Microsoft Dynamics SL Object Model, this

includes information about the SIVApplication and SIVToolbar objects and their members.

 Glossary of Terms 167

re-entrant

Object that allows the client programmer to call one of its methods or properties from within one of its

event procedures. The Microsoft Dynamics SL Object Model is not re-entrant. For instance, it is not

possible to manipulate the SIVApplication object in the event procedure of its Message event (you

receive Microsoft Dynamics SL error 7554 if you attempt to do so).

system database

One of the databases of a Microsoft Dynamics SL installation. It contains administrative and system

information about the installation. The system database name is required as part of the Microsoft

Dynamics SL login context.

third-party control

A control in a Microsoft Dynamics SL application that is not a standard Microsoft Dynamics SL control;

a control whose name begins with the prefix SAF.

transaction

A set of operations on data that stand or fall as a single unit. Transactions are defined for purposes of

referential integrity in a multi-user environment.

transaction currency

The currency ID of the monetary amounts of a given transaction on a Microsoft Dynamics SL

application screen. The transaction currency does not have to be the same as the system’s base

currency, but may be in some other currency permitted by the Microsoft Dynamics SL system’s

Currency Manager module.

Visual Basic for Applications

A standard dialect of Visual Basic that is used within many Windows applications for scripting tasks;

also referred to as VBA.

168 Object Model Reference Guide

 Index 169

Index

A
Application Browser 147

B
Button control 3

C
Cancel method 5

Collections

controls 6

Properties 64

SIVControls 101

SIVProperties 103

Constants 7

Controls

Button 3

DSLDate 16

Label 38

SAFCheck 68

SAFCombo 70

SAFFloat 73

SAFGrid 75

SAFInteger 76

SAFMaskedText 78

SAFOption 80

StatusBar 118

Controls collection 6

ControlType property 9

Count property 11

D
Delete method 12, 15

DisableObjectModel statements 14, 20

DSLDate control 16

E
EventLog property 18

Events

Message 50

SubFormDisplay 119

Exercises

Browsing the sample

application 149

integrating Microsoft Dynamics

SL with Microsoft Office 127

ExposeCustomObject statement 21

F
First method 22

G
GetBusinessDate method 25

GetCurrencyIDs method 27

GetCurrencyView method 28

GetCustomizationLevel method 29

GetCustomObject method 31

GetEntityStatus method 32

GetStatusBarText method 34

I
Ill-behaved controls 133

InitializeMode property 35

Item property 36

K
KeyControls Collection 37

L
Label control 38

Last method 40

Level property 42

LevelNumber Property 44

Login method 45

Logout method 48

M
Message Event 50

Methods

Cancel 5

Delete 12, 15

First 22

GetBusinessDate 25

GetCurrencyIDs 27

GetCurrencyView 28

GetCustomizationLevel 29

GetCustomObject 31

GetEntityStatus 32

GetStatusBarText 34

Last 40

Login 45

Logout 48

New 57

Next 59

170 Object Model Reference Guide

Previous 62

Quit 65

Save 83

SetBusinessDate 86

SetCurrencyIDs 88

SetCurrencyView 90

SetCustomizationLevel 92

SetStatusBarText 95

StartApplication 113, 116

Microsoft Dynamics SL Object Model

integrating with Microsoft

Office 127

limitations 131

Microsoft Office

integrating with Microsoft

Dynamics SL 127

N
Name property (SIVControl Object) 55

Name property (SIVProperty Object) 56

New method 57

Next method 59

Notes/Attachments Icon (not

supported) 61

O
Objects

SIVApplication 98

SIVControl 99

SIVProperty 105

SIVToolbar 109

P
Previous method 62

Properties

ControlType 9

Count 11

EventLog 18

InitializeMode 35

Item 36

Level 42

Name (SIVControl Object) 55

Name (SIVProperty Object) 56

Value (SIVControl Object) 120

Value (SIVProperty Object) 123

Visible 125

Properties collection 64

Q
Quit method 65

R
Relative Date Dialog (not supported) 67

S
SAFCheck control 68

SAFCombo control 70

SAFContainer control (not available) 72

SAFFloat control 73

SAFGrid control 75

SAFInteger control 76

SAFMaskedText control 78

SAFOption control 80

SAFUpdate control (not available) 82

Save method 83

SetBusinessDate method 86

SetCurrencyIDs method 88

SetCurrencyView method 90

SetCustomizationLevel method 92

SetStatusBarText method 95

SIVApplication Object 98

SIVControl Object 99

SIVControls collection 101

SIVProperties collection 103

SIVProperty Object 105

SIVToolbar Object 109

StartAppAndAutomate function 111

StartApplication method 113, 116

Statements

DisableObjectModel 14, 20

ExposeCustomObject 21

StatusBar control 118

SubFormDisplay Event 119

V
Value property (SIVControl Object) 120

Value property (SIVProperty Object) 123

Visible property 125

Visual Basic

prerequisite knowledge 1

